forked from alibaba/EasyCV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathefficientformer_l1.py
101 lines (92 loc) · 2.67 KB
/
efficientformer_l1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
_base_ = '../../../base.py'
log_config = dict(
interval=10,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
# model settings
model = dict(
type='Classification',
backbone=dict(
type='EfficientFormer',
layers=[3, 2, 6, 4],
embed_dims=[48, 96, 224, 448],
downsamples=[True, True, True, True],
vit_num=1,
fork_feat=False,
distillation=True,
),
head=dict(
type='ClsHead',
with_avg_pool=False,
with_fc=False,
in_channels=448,
loss_config=dict(
type='CrossEntropyLossWithLabelSmooth',
label_smooth=0,
),
num_classes=1000))
data_train_list = 'data/imagenet_raw/meta/train_labeled.txt'
data_train_root = 'data/imagenet_raw/train/'
data_test_list = 'data/imagenet_raw/meta/val_labeled.txt'
data_test_root = 'data/imagenet_raw/val/'
data_all_list = 'data/imagenet_raw/meta/all_labeled.txt'
data_root = 'data/imagenet_raw/'
dataset_type = 'ClsDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(type='RandomResizedCrop', size=224),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]
test_pipeline = [
dict(type='Resize', size=256),
dict(type='CenterCrop', size=224),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]
data = dict(
imgs_per_gpu=128, # total 1024
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_source=dict(
list_file=data_train_list,
root=data_train_root,
type='ClsSourceImageList'),
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_source=dict(
list_file=data_test_list,
root=data_test_root,
type='ClsSourceImageList'),
pipeline=test_pipeline))
eval_config = dict(interval=1, gpu_collect=True)
eval_pipelines = [
dict(
mode='test',
data=data['val'],
dist_eval=True,
evaluators=[dict(type='ClsEvaluator', topk=(1, 5))],
)
]
# additional hooks
custom_hooks = []
# optimizer
optimizer = dict(type='AdamW', lr=2e-3, weight_decay=0.025)
optimizer_config = dict(grad_clip=dict(max_norm=0.01, norm_type=2))
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=1e-5,
warmup='constant',
warmup_iters=5,
warmup_ratio=5e-4,
warmup_by_epoch=True,
by_epoch=True)
checkpoint_config = dict(interval=30)
# runtime settings
total_epochs = 300