-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch3-根据零极点绘制伯特图例1.nb
845 lines (817 loc) · 38.7 KB
/
ch3-根据零极点绘制伯特图例1.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 39432, 835]
NotebookOptionsPosition[ 37899, 800]
NotebookOutlinePosition[ 38261, 816]
CellTagsIndexPosition[ 38218, 813]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"H", "[", "s_", "]"}], ":=",
FractionBox[
RowBox[{
SuperscriptBox["s", "2"],
RowBox[{"(",
RowBox[{"s", "+",
RowBox[{"2", "*", "\[Pi]", "*", "100000"}]}], ")"}]}],
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["s", "2"], "+",
RowBox[{"2", "*", "0.7", "*", "2", "*", "\[Pi]", "*", "100", "s"}],
"+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "*", "\[Pi]", "*", "100"}], ")"}], "2"]}], ")"}],
RowBox[{"(",
RowBox[{"s", "+",
RowBox[{"2", "*", "\[Pi]", "*", "10000"}]}], ")"}]}]]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Simplify", "[",
RowBox[{"H", "[", "s", "]"}], "]"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{"Abs", "[",
RowBox[{"H", "[",
RowBox[{"\[ImaginaryI]", " ", "2", " ", "\[Pi]", " ", "f"}], "]"}],
"]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"f", ",", "1", ",", "10000000"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{
RowBox[{"180", "/", "\[Pi]"}], "*",
RowBox[{"Arg", "[",
RowBox[{"H", "[",
RowBox[{"\[ImaginaryI]", " ", "2", " ", "\[Pi]", " ", "f"}], "]"}],
"]"}]}], ",",
RowBox[{"{",
RowBox[{"f", ",", "1", ",", "10000000"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}]}], "]"}]}], "Input",\
CellChangeTimes->{{3.750141615154027*^9, 3.7501416342761993`*^9}, {
3.75014281350086*^9, 3.7501429681333323`*^9}, {3.750143002546319*^9,
3.750143127847971*^9}, {3.7501470150196047`*^9,
3.750147015946501*^9}},ExpressionUUID->"b998a185-e69b-4bee-a9c4-\
498e435b5fac"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox["s", "2"], " ",
RowBox[{"(",
RowBox[{"628318.5307179586`", "\[VeryThinSpace]", "+", "s"}], ")"}]}],
RowBox[{
RowBox[{"(",
RowBox[{"62831.853071795864`", "\[VeryThinSpace]", "+", "s"}], ")"}], " ",
RowBox[{"(",
RowBox[{"394784.1760435743`", "\[VeryThinSpace]", "+",
RowBox[{"879.645943005142`", " ", "s"}], "+",
SuperscriptBox["s", "2"]}], ")"}]}]]], "Output",
CellChangeTimes->{{3.7501430599438972`*^9, 3.7501431286119213`*^9},
3.7501470162672043`*^9},ExpressionUUID->"e5daf422-13f4-48a8-84fc-\
fafd40a825ce"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}],
CapForm["Butt"], LineBox[CompressedData["
1:eJwB8QIO/SFib1JlAgAAAC4AAAACAAAAEUmHnigTlj6+jBA///9NwGSPmLja
P3Q/MLJeRwH1TcBVUkeSrj+EP680qU8D6k3AzrMef5g/lD8fLDNgB9RNwIpk
inWNP6Q/wN4ZgQ+oTcDoPMDwhz+0P27VKcIfUE3AFylbLoU/xD+y8QpBQKBM
wC+fKM2DP9Q/DS4sL4FAS8DROTA8hBnlPyFWmBXWRUjAekUq4xNZ7z8cy8+H
tH1FwKUDd2WWsvQ/3j+ukInDQsBYVClpoyX6Pw+aNpxdnD/Aw7WKFZc7/z9G
cUCftBY6wH1D3qhFXwJAoZo4A6UaNMChmSkX4hMFQEQyJLEXdSzAIXjM2fGZ
B0Aa+L5/5H8hwIeOV+SBVgpANzeYPYiLBsBJLTpDheQMQIpcbMQDdQVAlDlP
8qplD0CUAb+YDcYfQKUuK4qJcA9A4NdoEH4PIEC2IwciaHsPQJdyvonmOyBA
1w2/USWRD0CGJuj2iZQgQBriLrGfvA9AjrmuchJFIUBQRQc4ygkQQO3RAqrj
oiJA1u3m9r5gEEAyOGuOEk8lQF7o1EIuZhBA703j8Qp5JUDn4sKOnWsQQD1o
SvzooiVA+NeeJnx2EEAJG6s+VPYlQBnCVlY5jBBAVW0aw9qbJkBclsa1s7cQ
QPfc80U+4SdA4z6mdKgOEUBA9kDm3VEqQHzoPKe6ExFAKg9QQRV1KkAWktPZ
zBgRQEhItqsnmCpASOUAP/EiEUAOCFHq290qQKyLWwk6NxFA9/6ssHVnK0B0
2BCey18RQMdGyegLcyxABnJ7x+6wEUC2eOW9x2guQJ8bEvoAthFA4hbh9YuG
LkA4xagsE7sRQM6RDf8dpC5AahjWkTfFEUAqxOIkqt4uQM++MFyA2RFAzKIG
gllRL0CYC+bwEQISQG3vJopoFjBAKqVQGjVTEkCFSBYGQN0wQDMfd020WBJA
Thlou7PpMEA8mZ2AM14SQCodcwIG9jBARyFbZG5mEkCzQnodOggxQKj3N5Q=
"]], LineBox[CompressedData["
1:eJwV13c81G8cAHA/ZaSijLuzV8Y5znEaCs/HCFkVMiIhZFRWRpFRspJdRMme
KdkNIZIkKatBIatCyI78nv7h9X7dfZ97ns/3+/0MUXt3Y0dGBgYGFfzn3//R
SA6uBQ9OEOobX+QWVoDag7UG0iWc8H4ib6YzWQEa678EF5RxQp3NBxv5uwrQ
psxUIVnNCTeGambOFClAv5wxr0QjJ5z+XTdxtU4BGAiTo6J9nDDzKclTcUQB
dMaEg/k3ccGPWdWBGxRFOGKrXZ7GygU1lceuLNIVweLTmVFedi5IsE95tE9F
EVw7HumTeLnA5/ypAnsDRYitNiHxyHMBVDqGGbspQgrton6yEhc4XzfOeOGl
CJnFmUFc+7mAjzl8i8BFRSjPmBrZeZAL+hcJr7wjFaE3POIhuxUXeH5j7unJ
UYSvDPdHrttywRsnxuOuxYowcbGbuN2JC1qkKQojZYqwek40aKsnF2gxu45E
1imCoPkTPdYI7AC54Ts9iuAg9evbfxVckPdytZz+Hx10mautTtdygaU6KUmS
mQ6yo4Fd7XVc8Lc2a2XTVjrMZ7M1pbRyQVOnu2swNx3ChCSz5b5wQdDoe70Q
STo4r0/yJn3D8VhZe9MhQweD/oqE5QkuoMlxLm6RpwN3mnpo028u6LixQ11n
Lx1yeU7YWm7hhkSf+yyj2nSInBf/8IydG2LdZ5fv6tHhTNePw7u4ueGXQNzd
Q0Z0UErwR7+EuCGt0Jbd9RgdmrclC11V4obrjesOY/Z0+LbpdX/ZSW64MFa8
yhhAh5bhBFOCIzfMlu260HKJDsWNFu0BrtwQvo0/IDCEDl7BY0+0fbhhnrz6
veEqHRj//JfeH80NzQfA52EcHcY+tnJqxHNDnoofD0ciHdpq46ILbnBDxs8T
P2yT6ZDoK3jRK5Mb9oQSN4ZS6SA2t8+StZobhP126J/MogPzu43Os0+44cjH
1a0OOXT48aBFt6uBGyLPTEfb5NGh/KzpvozX3ND2IjNgdxEdNL67E5WGuOF0
bOdOjzI62A/m95zcxgNKLuamqnV0MD9HUHLeyQOapFi3W89wfNeuJnoQeCCS
uenDdD0ddpMcD4eK8IDYvnhK+HM6sB4Rf5WtxAMGtMN9Li/psDaQKFWizAP9
FEpLUisdZt0YwyvUeGDvzvuTNa/o8CliSKNZlwfSr4Qf+vWaDqX1d5+OWvOA
63MmNsFOOmQbcvBP2/FAwq2wEP53dLj5OejCohMPnFbfvsj9ng4hSyf2sHjy
gK9x8v6VLjoYywuUSV/lgUJm5fSoPjosZ6TmuJXyQOCmUKH+ATpMybIyni/n
AZ87i7eSv9Bh+LGfbWAND2gbLVgf+kqH171mgtcbeSA2VIqhcJAOGew8Kfd7
eGCi70XqgW84/rfDFqo/8cCR73y0D9gRMvMm9V954Mvb4GTPETp4aHft6PyO
z6vb91/6KB00gxKiZ9dx/Nist7eN02Hftv++rzASYLD2eanRBH7e0zx0GFkJ
MJsmFteJTag+vJmLkwC/uVcOtX+nw8TU9iAlSQKQ9y8w5/2kw0DApX4VCgF8
3nQTeSbp8H7L1P6DNAIM8a+9uYz9RKJ96dh+Amw7uMPCfIoOsSeiPf2MCPCx
X4F3bJoOc0+iOidNCMCbEeZp8AvfX74oeXtLAoSR89zKsEX6IqYMHAhQnlfs
5zmDn5cjV13ELhLgdauK+sdZvL8HYa0pwQSgPzZYk5ujQ8D2MKntVwkwfS24
JgRbq+3y6FIcATxqWS1FftOhVzPE7k0eAfgi7p8+NE+H/dnBDRolBIA93lpx
2HcZgoVrywjgLWfs2YXtXHdpIPsJAQp6or6aLdBhdU+Apf87AowQShj0F+lg
c+Ni7VQvASoJZ4zDsJt+XyCe6idAkcbY3qfYMWX+PYbjBLDYG98vtUQHIRnf
o+LrBHBnu2v5C/typE9ZKiMROlL3E4WW6TA+dp6DnZUIF+fTsvSxy3K83yxz
EuEP0WFPDraGoOehDmkirF1L3XZwhQ75AR6FmlQimE5/HnDF3vrJneURnQgO
H8dK4rC7b557kaNGhHKROZNebKcdZ9QvmOL1R+odLFbx+3zOLXPakghuW9ZK
fbHl37hunDpJBLa7RgLJ2MtRLnVGrkSwemJ2sR3besJZoNmdCAL+/V7j2I3a
zgHKPkTwI/Bl//eHDtGbTivvCiFCgteRKjr2tJ1T6q2rRDh3yCJLH9ukwXGJ
/Rrer8TebntsgUsOVSs3iHCLkikYh126aKfwtoQIam+Dcr9ii21m8xsvI0LS
ky2LM9ipO8ufblQRodEm+9l/azh+soy6tAYinDXTqRfFXlIuvq77gggRq8fW
aNhndIy7bNuIOE5+jxG2mX22TUI3EQghp5qssF+76+UWfSSCY9cLThdsuDT3
vfELEZpE3CZ9sCmpGj5zE0SwXNqlE4vN0DF8zWSdCJUfdLsfYft8jn7nxkiC
Dib2sibsHxOKxDAWEvBVKUm+we7ZdCW7cicJ6nlGJr5g6+2kTLQTSNBSN7tv
HLtBqEtulJ8E0fvcZH5hFyuLP+KRJAHFQG15HVtY5/VfOQoJLpt09G1ep0Oy
qbeWNo0Eu532ntyKHeze9NZ3PwlM1W67EbHnA9144hAJcvOu/hbAdo3msirQ
IkFbmThZDNs079RYnxEJ2Nn+ZFOwX5VvlZ0xIUHAhS/f5bHVGio8WS1JkCb4
+hsdu/KNVY2IDQmOUhgT92KTP29a33eKBE/IdQv7sTMmSjSOOpPgLoG6Qw2b
e9Ek0uUsCWSig4cBO2rT2ptQLxLMfew+q4n9d0cuV5ofCTQP6FUcxPYWMrAs
D8T7G5mv0MGeoMxntIWS4KL8N49D2CeUb48Mh5PgS7XATz3s99paMn+ukaDW
P1vcAFvHdNKdK4EEG7/P8RtiP7VLrqLcJIGqjm/XPyu6q/zRTCeBgVG+gRF2
QeAIWGeSIKh+LOKfBaJjws/nkUBClzf8nxNTlNpjikkQU8ir+88sef078x6Q
wOJtXce/9QLLw8zrKklgN9/D98+z9bJ3eh6RYKZcVu7ffpzedA9PPSNBqHgE
sz7250+B0szNJJifzy34d54jE7vOCb0igcpV2KmL/WKhvWJPBwmurLBraWPv
3+SzYtRFgk/HGkALu2yHIDr9gQT2yRssGtgSQi/CggdIsPjEKw1hp1HOtqUM
k+DU4uNlFewdyjw7ysbxefLPi/+7P6smjumDsyTYG31z8N/9/KpwZ8hxiQSN
53KkadjNHD1SP9dIEMkysEcWO/a1VuUCCy+ocPsWiv+7P0WBqxe388KuGsJ2
YWyLiEpg4OKF3TlO+/mwxTR3vWET4gV2G4tZjn/xErXmihfnBb5o9kA27Mm/
SZY8ZF5o/3n73b/nt/rxpjFhJV6chxS+Lv97HxS//VXS4wW6b278v/dDfgf/
wceHeWHf1P2gPmzuaeNr6BgvSI5N7+/E/lL0nKhnywtqcQ7Cjdheotm0k768
gLyuZmZim2989B0J4IWOgcesqdgqAzvrXEJ5gf+ArXocNvOt0EPnY7CLXu26
hJ22w84+KpsXDHeN15phB0+nFrIX8oK2bGSRAbZDe+d0UikvbJfvdtPApkZC
QEYtL0Qee+Eoh/18Qzi5ooMXqIuVtH/56Mf0lxcDq/jzn0giE+ert+2EbacY
+ODZVwalJOzKYiPjCSY+ON51lDscO8jp2Ze5HXwwX6pwyA2b88udJRYpPuBk
lQ35lz/3v7EmK5rwwakKvrXHON+ucuyuvGPBBxJsjlYl2I+Nt6MtNnyQGrnp
Wjr2/g91poPOfDDtKn884J+/CYXEBvGBCoN92T7sAyuDvT+K+IC6s3yhCNeD
tQOP7Mwe8MH1ih+7U7CfBiVMNlbywfIpZfUwbJXNGoy36vmgLTqg5sQ/c+TI
6fTwgSzxNYH9nyUcw3IY+OG8474DDrg+rZ1W5eBg5ge+nq9LhthPi3nSLm7l
h19tFP+92Cq0lgdHCfxAWI9s3IKtekDq8waFH1iNmk+X4HqodvS7grU5vt7B
JWgY10906exX7vv8oOFhDPy4/u5wnz4iXsEPK+Bs8hfX50Fb9+cKtXg9lYPC
Q9iXtTzzjJ7zg3VV/pc87JatPm6RvfwQwtCPUwvuF9MCl/785YfoENtrZNwP
CMasO7NtFoBI0eu9LNjTl4I+kbYIQODtiY5R3D/E2YXU7eYSgDVmhuZM7PfS
YVfcpQTgcA9zESe2Rc01jm+HBWBbvEj2KO5PyEXbQmdNBSDzW4H1M+zVtOtz
G5YCUGxSWX0TOz0orkfAQQCOzuQc1Mb+cjAp3cxfAMrCjSozcb/j2J0m1ZYp
APqnPJfVcX/kNVuEHs4KgLBzaiUV91vlFY8fyi4JQFOvz+D8Dzr89nktXrgm
APyqkl6Psc+vTrLcZRGELZTEBk1s3020zhhBQbD1Kv1shPu3AJ5qW+dDgjB4
K//6Qdz/Pe1ref/NSBCWP203/A977Vaf1klTQTi1kmH2dAw/n0Ir0mYnBaHY
sgZo2CFSKrOaPoJgb8Z4gAP3k2HKz0OFswQhfZ2NrXAY55M/73+n5QtCR7tE
iDk207NvjoR7gvDdnUuEGTtcg0lve40g/F650207hOuDvi7nn3ZByFBpeLd1
8F9/2JHduywISrxB3Htwf5wS+qnp+hEhCHpyQ7+tF9eHuSSBe8eEYJy36oUd
9n4HQ5+240Jg7mSmttxDh37tBkkWRyGYCQ0RFcMW25YfFXJBCMjhK64uuB+/
d9PzsHe2EGT2S/c0vaXDOgulMKFACEghvVv1sI0ujDCU3RMCJUEh0tsOnN+t
zMsnq4VAejQov+cNHfaIqvI4vcb7GbAy6MbzQUMJ62eLeSFo6Xi39waeL3YK
Pqf7rQjBgO0pLxZs+9iAmBt/haCgYtrEvwXHw3Na9T2rMHxl9Nk49gLnvz3d
mfqCwvC+4txdhibcLzTcdVLTFobJl+ekduD55kfPnjnxVGEY3p0ixFCB+917
8XHSd4SB6Dbpq1WO+/nLP2TlsoUhfDaBGPGQDrepGaf33BOG0/99FGPB85Nh
BNOAboMwpEZTl2bv4Xqyr/vl2Qlh+C17Q949H8eLneroNSUM6icOq93E89iW
0QhGvzlhOGfoZ/YkF+8/4YBqyJowNCQ6J25k04HN56jlIVYRCBiteu5+F/f3
b2o7rAREwNTBVPVnCn4/ah0FvwiJgHPZwODMTXy/cjjP2IqKAOEqu+78DZzP
L57Z4igpArXvGQ7PJ+H+TFJE6xxNBDxe9j79gOdNoeCIRyFaIsAs+HmaGkGH
UJpZbt4ZEbi/LLA45U2Hzk363jbuIhA7734q3At/vw9pEL1EgM3jlye/J86H
l8iDkX4i0FVw2+zAOTxftK3xn7ksAqmaIxeOOuPzOOYkKaaKwDuvz6OdVv/i
kWr/M00EsnQ27aQdx/3J1usKuXdE4EWPhOs1C1wfyn3f8uSIwDFm38g9eN7u
2ji0daVUBIp17LNP4HlcK23mcn2TCLRuON+ZQLh/ODt61L9FBEQbq0gsajg/
wScRhVf4ej5tHVEV3D+MNz3L7hCBpUtFGbr7cD1QSlm9+lEE1srTLexpuL6/
VfUy+IXjV52/+lgY16vN1+w+8omC+W6bg62ritBP7c45JSgKNLVXEv7LilBh
KTg2JSwKU2OeTuKLimD74IEro4QouIv2T7nNKsLj493eFHlRoFdNH28eV4Sz
DwXDL2mKgkSV+nBMlyJ025QVi54RBetHtwaMChShOGplsuScKMhtC9lqk6sI
oZUa8ns8RcE0Y0fb6SxFoLL1VOj5isKPtYRB13RFiKxaeeodIgry971aqXGK
cGCb5tsXyaLQfT9Ar9BHEbIf9fx2qROF4/6rFvvVFKGs3alapgFfb+N1QX2/
Iq6LS/4/n4uCUe4vR/U9ivCZie/vmVZRqLn8LppCVQRuYxtWjy5RqFp8eLJQ
UBEifowJ+H4XhVbrmOPojwKc4V8+eJlHDCxveZc0lCnARWoUqyZJDGwsRI36
ShQgSp3v9SZ+MTifr04ey1eA/NMqR66KiEFEUuClydsK8LUi5HgkRQx+PRwx
TY9UAGODLe6x6mLwvTK/P9hGAfZe4ktNOysGQtstnlptVoDy538CjTzE4F7c
x08Jf2lAZR2wY/QWg5EFbeuGZRpIJt2luPqLgU+sfQzzFA0IRbvqla+IQZTD
h5d7e2iw0E0d+5AqBrdyUzXlc2lQIaupRGwWg5VwixNXVWgg3+/WmcQnDmVR
bidjH1BB6UKWNK+gOHS9bhd3yaLCPkJfSIawOOyPjajYl0QFOKKhULRLHGZt
JpyrfalwpJmU+IwqDm+eqt+RU6WC170XJt81xCH83YYgsVUOqgOF+9TcxKE5
ZqzyQK8sqAl2DXx/Ig6FwyyDqE8GtM8orX913QXRrqfkhmUkwfFOyawiuwTo
3xFa88sThXEX+YtG9yVAhvEpb/QTPjhid8uZ6aEEjES9yBhP4YPHFpvMn1ZI
QGJsTv2x83wQq9NHl3kkAQt2VREOcnywRyJ4iqlZAowiT3IczeSF8MEO27qP
ErA5eCguJooEu8zP6cgySULnb4bpx64EsNcq5WazlgTmiCuBbR6cYJrk5pto
IwkdbHUX0005QXuY/IHPDu/zsLzflX2cQAnJT6c4ScJp7biOVAZOmH9yV8zQ
QxLcG5uyPyfshHB6Ii0+TBKCY28c7a3dASVifgaEUknwP//L5rQiO2R47r6f
8UASbG2OPxBiYIf4ht8cUuWSwKPKS9rSsR3O23h07a2RhMa818V+rttBLc3l
uGWjJAihwKVnedugc6e18+0eSahI657eJrkV5hnUw8T+SsLe7b8M9hixgtA+
HachBinwhRdz74VYQdfdUDdzkxTs0yV63v/FAncGLLcJbZEC0smTJLFEFtB+
7JXMyy0F7w0/1699ZIYU79zcHTJS4HP95+VQHybYP8by4u8xKWit+PE75zMj
OAiyF9RZSIGdD6cbqZIRYk25owKtpICsqdLTFsMIw89FDFdtpSBXO2fXdzVG
uHZXuWfBTQoWSQY/WfP/g34Lt9HJUCkYOyrM/jSYAYJfdzB9LsXrrw7sX6lf
Q4rHyVZuZVJwK0szQChsDY1MXCn7Uy4FSrSXowW6a0iPWdlKoFYKmlIS1kff
/0Hc6jllJ55Lwcu3vvbMk6uosNrParBXCiRtPjjF0lZQZ5bIw9ENKUgad63U
YlhEl2kBzL6M0vD8S7CPducC2l3fY8XMJA3SjTXrmZkLKK0/mlmKTRp2yaa0
22gsIAfigpUztzSUXd4iMxc1j5ZjXjH/lJYGb/8rDQLk30jU38t65qg0pL97
+TgldwZpKAt2e5tKw3nWgz+yg2eQ/epL/SUzaeDl0MhaPD6DsgMFD/y1kobG
3lZWX84ZJBbayrvNSRomlVxGErf8QmLRQn1SF6Xhmlt8eefkJNLQf2VUEigN
ufFElZSSSWS/7XwLNVgaeHKWZ4ZcJ1F27Kuq3WF4P8X5hQw/fyLxpPPJmrHS
oBNqOGsw+wPtut129GS2NNhmBK+e4/mOtE74vBrOlYbuPP6npP4J5CAkou5U
IA33jj5bV86ZQLmZPrSz96ThrbjxyFfFCbQrT4QjoFoaxBZFE3LMx5HEfd/2
m23SUPnSqN6mehRJNojpdMxJg6t23EenpmEU5MKDIhek4dLrkSe9ScOol5N1
r8ayNNxKalaocRhG4Y5TktXr0uBP5dBrYRlGY2y1zBmsZDju5h6x2WQI5R8z
bDkrRIaZwXHn4NWv6O9f9ExKlAyfaE4/Mwu/IrNCxeohcTK4bxyQjjT/ipj/
EPOPkclAnonUzqr5gpwyh6+qKpFBd2j9XWfIAJL46Xdwux4Z5MPkR5/v/owC
k11VXxqQoeaH9KuQX59Qt+qJ3aGHySD6CJn+LPqEwuI1JBZMyaBl2OreIPIJ
jezezjRwkgzxrxcq1QkfUW5IdvM9HzKQRptVbYX70C7CG02DLDLwFO/rjs7s
QpuJ3A/6csiw8/ygSbJHFxohWvGdyifDVFnUNLt6F8rj/T5zoYQMhgHvbpl8
e48kBZkyCqrIwH8tRpZB7j0i71JdZmwjg9hvKw5idydikwg7FdtOhgP5KdLP
izvRD4nXHbxvycDyyrT2bWgnKpayzKN1k+HLW/SGXaETyVJ8jG2+4PMTdA3Y
pN8iqmLpvUdzZBh58c18d287YqfPEw8ukGFIaUiLK64d/aIfuNK5RIYzL1l3
3dZtR2W7X1mOr5GhqI6psLDuNVJQHmXmYZEBN6tXq5cftCElELTz4JeBY4r1
istlrUjZ6DqPlJYMiHwup5iLvkDGewX++64tA5bEE0KBE83IVaRksviQDNRc
3UbeW9aM0uZam6iHZUBJSfqmi3ozWr252WvPcRkQnY1fv+nahJ5+Deg46IGv
D+z2+9DbiLpb2R6zeMuAfTdDfUV+I5p8eCvvlY8M1L8rGGT3a0SCYTWBhgEy
EPT5dDLibURB0r9ljoXLgPWyftzpUw0IPF0jHG7LgMTMZpUw/mfI4viKl+Rd
Gdit7rSbo60OeWhG2kxkyUB4s+st7wt1KIsnf/eZAhnIvDHbXf/pKWJ8PPTN
u1wGNkpz75MLnqBmRku40ioD95R/FXk4PkI6yTorWfMy0HtpereqaxVqfyDJ
Yr4kA23P7hwWUahCxq+ZeLatykB/5BmttOVKZMPYTPPdkIG3VPlCg6hK5OsB
znpsFGiUOBkZ+rAC5Roo980JU2B3vwXlO385knEmjRaIUeBQavpA9M+HqOzK
0py1BAXPJ3MV9548RE8eV7G/lKGAq7dTqtuJh+i9tKJ2+m4KqJZciyjPL0MM
TJQqTX0KxOW4UnMy7qNwEbamZUMKMKsbrNQb3EfbVL53lh6hQMt7Xo3qP6WI
6F0wSTSjwOYquzOS1qWIOiS+a9KWgvsJrT0fJO8h6zqBpGRfCqiZzXPeGypC
tT7snqNZFLj58fBR3695qGVCfc4tlwJPf+Tdai7MQ91WPt5z+RQoKB5bSfPK
QzPq/T4bJRS490ug9RNLHiKzF1/kraZAakZs5eV9uSgt/2CYYRsFpJT9k20e
ZqNC3gtM3e0U4PusNp5yORtVx9wLP/6WApnWTK8Ommaj915cUae7cXzGDz1d
Xc5CW9HQ9dAvFHhTaR5TrJOFAvsCU6rmKJB4tSb+9NxdFK1XRlJZoEAz7/Uy
l+y7KLXu263nSxRwJL61p5vcRZU5erffrlEgiGH+FU9NBppyJ2V9Z5YF87X2
mqGIO8iGtbJYkF8WKi/lpq3rpyNQ/ll3VVMWblQuxdobp6DwZKd6DW1Z8H8u
MMnClYLafw01bOjKgpWByIxF901kkf+h6YIRXi+UoWbR4iby4Gp5ddZSFpx+
b7z/5XIDZU5l9hxzl4Wtwyn/WRcloTFdgT5OL1lISf0tNuWdhGRzUz68PS8L
ZxgSpDlQEqo9Hvv50EVZcE36+3KjNxF1vgwYUr0qCwfvasW6bE9EDNlmUxLp
+PcTGF4KJsUj7fV308N3ZEF1a5Ufu1M8irEwnLmbKQviB8bPXlCORyQOrd+8
+bLw15KR1aspDtECFVa2P5SFCy/9OfzcY5Gt2TamxRZZyHDMKAmcvYYa2Z4L
tMzJgoVFUnDT9QgUX5eQYLogC8M+qH3qaASy8bBj/rYkC7N+VaMPCBFotYdh
ZmNNFi4l2F1eyApHSlmoSZlFDjTLPuifqL+KCvbWuZTyy4GCi52hPXcY8v0R
8+WAkBxMbzW2PjF0BWndsTZpE5GDdJXy8Y/3r6BBxjWVcQk5qDVzNjfWv4L4
OvbvEKXJgauUfoRg9GV03aG2OllLDjgG0SN2oVBkTYykiOvIQQF9uSJ2LgTJ
tJlnPjyEf99OVvjSyxDUIr8U1WEkh+dFhx+ZXiGI4c/uE6yWctDRqP2qPT0Y
eSdUbAo8KwfltPr9m+UvIctn94+cuikHP/oCrBMH/VFyTsf4SKocHNZW9knM
9kedkdNBTulywKmVuSjr6I90TailLply0N7EuZcy6Yf2TZRu8SiWgyPrPjfF
//NDJM7S54HP5KAstfFly0EfZLrUbvm3QQ5kXz41aNzhg+L7J2eCm+TgSg5x
FPWfR6wFssJXcN/tb3uf1nz+PFo6cC8g6r0cTLE6bGkp8Ua9jiVKN8fkYMcO
voC7NC/Eqf/6NfG7HLQ21k3rbPJCRrSf9rd+ykFkU6mlXa8nalmVSbg9IwfN
dtEVw5c8UXVc8VT2qhzsmxK3+++9B7rxqCj/ATsVWOL0iNf53ZHp9kLSqz1U
SBTrHrC75YpaP3HQQpWpsN33iZXfUVekUuino6xChQtngvYeZnNF4po6vkXq
VCDFnfukGuSC5vzHuqIM8FwxdbDuyzlnlDCyK07PngqajKVvgj2d0ObymHxG
RyrMPuVq71RyQv7B83WPT1Mhl1767sWyI7Lla56UOUuFOeGXbDcuOyLakVN6
W/2poDgdNJR6xwF1PMliar9OBcvMswptv+yRRtQWwbB4KjTTl97eeGqPqs08
lVTwnLOLieXTzyh7dGcWTt1LpYLaepW1gqQ9OiM12BCTQwUB31qZVQc7tDVJ
KNDwERV0RxYu3p0/iXRd0+c6RqhQQL7LZLZ4HGnFmV+yGKfCJk5avXb5cQSV
XKzD36mwullD9du540j57zXBhWkqRAZ1viD9sEQyiYG6/CtUoNUllepMWKCt
j09knN4uDyp/CO6HGc0R61de8iyHPKy7/Dm+v9UMbd7cW3GRUx52yKl9rYk1
Q2uGRq+uE+Vh4vbmKQdBMzQ5pDZfISoPCxHJMSfVj6GOLSJ6DHvkIU16T3te
tglqo/Z3R+2Th985jje4PU1Qi0nqSa4D8rA3/95FBjBBz+7s8JEEeXD43FOq
99UYPVD4L9NATx4688xmw8WNUbzl8EKqjTy8TBy4ntZ4BJkU5WYpRMiDvnkg
TfWWASob5aphjpYHuVNvFB/qGiB2sSvtn2Pk4eKFajbWFX3Umma3dDVRHry2
ZuuYWusjlRghw0935IEl4WenmJwe2uWeuny5Eq//Qnk1ZkEHhZawsFvU4M9t
mVp3luugL+O+4nKP5SGYzzfL1F0HpdoeM+qrlweNC7ki2ya10TZjzlzKa3kQ
ep67d8v0QTSvFHO4e0gePFZvel/l1EJHPf84FI3IQ1fxlfi1j5rofqnrxaBx
eWg5JzbGma2JnCUP5UlP4fPYL6oRlDRRP5H5T+Ayjucrv06dkxrIfh11JbLQ
IDVmQGG8E1B8+tKJdVYa2OXWEqOzANUrP5g4zUYDFe4h+3IvQAK+Qn9VttOA
88gdo+sEQL3Ta9LjnDToLTnfEdmqhjZfr6w4yk2D22c6ors91RCdckbtKQ8N
nEXzLnALqKH4059NEkg0WNZN3OvkrYrqmZK+/OGlwaHMwTovEVU0naPn4sRP
g8aAuRHnDhUkoME43ylAgxthfXzal1SQ/uCjoANCNOjOGOhmkVNB/wNwd8n8
"]]},
Annotation[#,
"Charting`Private`Tag$123656#1"]& ], {}}, {{}, {}, {}}}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}},
FrameTicksStyle->GrayLevel[0],
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->NCache[{{0,
Log[10000000]}, {-59.999977000313706`, 19.98947953589913}}, {{
0, 16.11809565095832}, {-59.999977000313706`, 19.98947953589913}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->FrontEndValueCache[{
Charting`ScaledTicks[{Log, Exp}], Automatic}, {{{0.,
FormBox["1", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {4.605170185988092,
FormBox["100", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {9.210340371976184,
FormBox[
TemplateBox[{"10", "4"}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {13.815510557964274`,
FormBox[
TemplateBox[{"10", "6"}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {2.302585092994046,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {6.907755278982137,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {11.512925464970229`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {16.11809565095832,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {18.420680743952367`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {18.51599092375669,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {18.60300230074632,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}}, Automatic}],
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{{3.7501430599438972`*^9, 3.7501431286119213`*^9},
3.750147016331356*^9},ExpressionUUID->"93727638-18b7-407d-b7a7-\
a017accc2c99"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}],
CapForm["Butt"], LineBox[CompressedData["
1:eJwV0nk41GsbB3AGYx8z1MkWcVKWkJQl8tymiLKGUZkYZn6/vJFSSGSZoiJR
TESlU9lKyVpxiCTRRkKNLEO2OKEpy6Fe7+/947me6/PHvVz39dUKOLIHI4mI
iBQS7/8/zfFcrq5Spo3vlli2Po4DJ+3qkx4Uhnptbl2XJuy1Z2d6CUpA7SsN
749jOLyr0Ii7inhoY3WxcwHhZE5y+EWUh7CZwzxNwuPWDTPnUCXqUw0RleHg
sErPxygRNaH09Rrvav1xaOTX2HIHm1Cw/uvATMLByapeMWdeoPS6px1HCDdM
8qPDXzYjm3dcJW3CgSV7WzHXVoT137RNYOFQY8rg2Pu9Q5vNIpSRHw7GN3Xf
nkGdaCbWbzCFiUN8bNeAe1YnClZ+qMYk3HHgtFBzuhN16QsUDQhHqPeuqs3t
QoKIMLMWHxyeZqcF/PzdjY4/03NY3o+DE29unlPLR6v9reisfcT8pCZte8sB
1LRu4tOEFzE/MHTLissD6CMfhKWE5Rw0HIbGB9Cb/JG/IwjvFas1Q04C5Fvi
7ytKeOnZSubnJQGyW7/0QdETBzpqLVDyGUKh645rrNuDw3vLjdYJKiOoWCVm
VsYFBxHtN1Gn6SPoSciPllfOOBjJBFbHB42gR7+mHJMJp/TcNIupG0G882/2
SBG2j1YwifAfRUHpAWEiTjjU1k7pBN4dQ5G3zLMEjjgUoAcKTpYTaJdZDTpg
h0PnekeXXQETSNzRe5JGWIw6kuJwYYK4t5pZ8w4cWAJ1Gbu+CTR2bH2hIWE1
boq4DXcSqXCiv87TcbjUGPSvces/iOqaFHsScIiy0/+itG8aNV/8QDe0woHr
2Wq/gzuNLPQo6d1bcTjPDrwXdncaefAXj8cRzuIWhHb9O432DDR8a7PEoceX
Fr/beQYVpVfdDbLAYT7nIkV+agY5CG43X9yCg4nSWYNLxkLUrBWaFGmMQ2WO
14Gi7UK09wp9pRJhC22dtAZvIWoXWaX1wAgHMGkSzsQJkdcJ9GjAEAcXV1KN
e7sQpZr/1WSzAYegC7EOSqE/ELX22MAXXRzyxU5gmeU/UfHtSZcXWkR+3yRm
B7T8RAWrXE/uIKyfyXtr1P8T5ZlY/mhcg0OpbvmWl9KzyLfmw/s6TeLezt8k
FlizaE7aQrN4NZG3LHbBPoU5FGM9q8FWweG/Bm5j6sHziLN6LMmWioPtrK/a
V+48envXraJIAYeEp4ddq7LmkU/bn7IKhKXdLzx2fj6P6p7H2vLlcVgR0Xwu
VnUBObj9LGLL4mDQYK0raFlApwxGmK5kIm+eev+5o7OI5gXtbSeXMOjn95gv
WS6iKLO5zPZFDDh+KWQPl0V0m7ctcR3hI4em75BOLCJ3eNvRtoDB2fiqfv+W
RRR5ja+oPIdBxX1bzzVBS2hVuJhe7AwGFIn96EbpL+Qk/BhydRgDXrIsZbbp
FyrTYvS+/4KBCrWu14n/Cynv7d4lQ3it2pqoX6K/0eFV93QiBzGwMhmt9PH4
jXycPz3Y2Y9B4IFj+qpzv1FPnWFv5UcMnlclr8yyWkaMBLtvda0YSMVEj952
X0bTQ2T6sxYMnHYEPy45uIziCzXMnr/EoLvDeV9zxjLysov42fgCg4lp6o3Z
yWXU9VErvewZUX9lt6K+iwiknfROdqzGwLjtffb5/4pAzabMNK9CDDo27Tqd
Ki0KqT6HmnULMAjLbDzEWyEKHq5V3ot5GDw5UGH1l74ohNQax1+9jQH9H17f
Y4YolP0VmN9wAwOG9F6tsRJR6Migqj7NwCBme3+RnR8J3OXu5/vEEvsdzVJV
PkSC8NyurqVTGBjluqVMhJHAYqOVZk40BoKFxiNpySQIsn8lbI8k+pcUmvGr
SEDrC3NdfxwDskpoU7CcGPyI2MUJO4hB2pSYIKNaDMSpT02iXTAYV6tzx5vE
oE7j9+gnJwzAMeK5RZsYFMT94bV5NwbCO+MFfcNi8NrspMvwTgw89709vJ4q
DuGXjbx1bTFQbspcqsHFgbtJ7/E2UwxuZeutGlKSAE9JD8OElRio6WxmLK6W
ALt12vkVShhcKbW5oqgrAWsqX9YIaBgkvfRQ2m4tAXrFm8pNKRiEzsYo5HEk
QHt37rFaMga27h2SeJUEVBdobmTMc2BQKnrhK4MMvtdYape7OeDDSzQn+ZOh
tNIAO9zJgS7NSxGqQWRQ50d123dwoNUs/+euODKs3mqo+f0tB8o4bTPFhWTw
U6F0ar/gALfhz6+HF8gQfdNRfr6cA1qRb/jfsyUhuxRZbE/hQFTenMpwniRc
lPLQTUziQGf7mv3dDyWBWURXen6WA+f1wntqXkjC6JaM+k1cDkz1rP585rsk
lKebPhGEc6Bm25HelY5SoGe4ZBzqywFPMcUBywUpMIoavmSygQMlxtaaG8Sk
AVJZm0Z0OSDJxP00KNKwGcS/ZOgQ9ZU1A6S10qCL2bsNaRD74WzBa1dp6DDm
BdNpxLyWysEDhdJwkHZbVGqWDedSvYe5DBnwlhuJOviEDSSVD9+rWTIwOkYJ
eljJhtg7LsvfD8kAdeduCWEpG8Ke2KkGxMnA1m+DKw7eZQNryNSNXiQDCjnr
ChVy2GBhRq0lLcpAfUw9b08UG8b7WjLO3JCFE1elOnzM2MAO3HHr70JZSJ1M
rh41YUO/sL7kRxnh5RBqkCEbOiUft7KbZeFSvorAby0bGkzyl7dPy0K71Ps3
CzQ2XE3kBonbyoG7IbW1bzIAHA23bk8cloPxQNcszZwAiOLO8ZOm5IC3c/B6
Ly8A7neVH01dkAPn9Os9l9MCgBJrkJslJw9TSnGvhxMCoOOd+r93N8tDyO1H
KgZHAoB5dLnkXYI8XPsqHDWkB0BIRZOqsg4FbpXHKD8Y9IebktwydWMKlJkz
t3p/9od2n20OWpYUGMwiD8x3+oOp+KNwfWcKxF9YcUK9xR8WPAvbrcMpkOiF
nL8/8AfuXNJZ/xcUaC1fMVh7wh94lq7Ce5gCVDPLcyLE/CHfyCA56agCOJac
yjBaYsGjPyW1A6MVIPr1gh1fyIKP8vXuOpcVIOgamUceYoHqkFHZzVoFCDan
kOrrWeBmJ2nxSpoKUcwim+xIFnR/G517yqLCr7ENXjr1fuA73kk3wqnwSlGo
IlvsB2NDjak3gqgQW7Zl7YdMP1j4mLvuVAQVohcEvdIhfqDSyGBYplChvXzx
G1XND5iZzVUVj6lQ3m116vQRX/hiUxBWRKFBoS39jiHpAJwaty6sUaLB57/j
JhYnmfBH+gf+G2Ua5N4zrXjYxQSHERH0XZsGE5VePu1FTLh/wUd6qzkNUq7H
BQqdmRD2iZr72o8GbRkx2FCGD5CPRb+cKqWB/v6nZqrU/aCf76a6xUMR6OpS
LqQ+BphqnnCu3KsIpgej1tQ2MMA6+0a8qa8iLMXSuMfzGGDxRMJCgqUI/Q2p
L/64xoD/AbaOpqM=
"]], LineBox[CompressedData["
1:eJwVlnk01N8bxxGSsmXfNfOZYWaYGWtIPHZm7Lts2VqUIqFFSkmkZKtEWUul
qJBQ+tyQyJK+WdojIaQkW7L85vfXPa9z7nnu+z7v93PP3RS03yWUh4uLK46b
i+v/67dkEfHZiI3w/O5Ixai5B9Ra1tqp3dkIxhe7Dn2WcQfrEeXj8mvEwWZV
4epdH1dw2m5VmSsgDqIH/stmgyt4vd87LCssDkxZde1/mCuEddWxZWTFofTe
O/+0ny6QVuMqI8kQhwAXwkjGSRfoSzrzQNhHHCQV3M9FVjhDiOqvIe4qcTiZ
nGpIl3ECG/4an5214iDzZjxfkcsJ1Ifj3nQ0iMOBDIlWx25HmCkWbLrcKg4r
78xT5SMdIVGJXKzxWRy6l6obrB46wHVJv+3e6ySgel9DAsnGHobWtH+8HyAB
7n+ClQWusKDla4abVKgEHKW/LeKJYEHZM6+Oo2ESELllcEjPmgUHjo88toqW
gINUYze7OVvg+ced9/GsBFh2ThLVPG2BMK3vLVAjAfvHN5xPItpA0EBpb8AG
Sci//6D56rAleO6T0tklJgkEk/mFzueWYLd0OjNCShJEw99aq5dagq5MqGOC
iiQcMGz03b/TEgSciG3FOpJg+0TNd90PCyjHC54M+0qC4Bl+TZ9lc1jIzynZ
Uy4JUTus+z8am8GkugDPwUpJWO8m5myGmcHX+tjtcY8kQe7H2NXOdWbQ3ueh
eP6ZJIy+Knni1msK+cKSlyt6JcH+Uky+0j5TMI/POPt7WRIyRj+HhJcCpPmd
jYx1kIKHS09OvthuDNOPU7p/uEpBrUnMn0CmMXjKpTCCvKWgIcD3ggWXMaj0
n5m0C5GCXPsyykDhVqh0Or2bcEQKNgQFGAQNG0Gf+YnAzhtSINDX3aN0dAso
UWOcictScIr3/dD6Pn2Oz9H3c3ik4Vbxg+Cqcn0YHTkoIiwgDVbbPLKzTuvD
/ZKozoWN0sAwvGO/pKsPZoqRtl1q0sB7UUc7+Mpm2CG61/SwmzQ8W1L9TAnT
g/K5QM1Xd6ThoJTg/DumDhB4BWNH70vD3XZm0UYxHcgRq3yy+lAaDv88PBj5
WxtOqvPYMJE0aBEP8JdUaoNHULF/Ro80DH24R23V0waurq+prsvS8GF/6u1B
Sy1wuxE80u8gA46BQXpnjjGhrXK9+pSrDOyPmHkgGsQEY1QVKeAtA+v+3bhb
a8UEyoc1y/rBMhA01bE5WJQJK6LXxXNjZeBqZ2erPosBN+O+gW+hDESFd0Z/
vKkBi66heQO/ZSC63H6zbioVvmheGwydlwHvYe5NYp5UaBbpVZ1YkgEPbfdN
JCIV0totqmfXykLPMiHhz2MKEMyxTkElWdAOFilVmFIDltbQig5LFtaa71Q1
DFKFXNHAoJRiWSiuXk3IDMPAsNOXouUqB28+zjj7jCvCoohu9TUvOegtw2IW
cxSh3kXIZJ2/HMyjC6d6rBXB8G2D28AuOYjw3d6hV6oAhkNKJ9Li5WDB3sS3
OFQetvwd6Bu/LQctwrv/S/kpA0ak0MQSLnn4Luzn44dJgMmx8C8SFfKg6F7a
OrzKByV4VXTfGQXYC+d239t9yuTA79smD34rwCh+SqKLMotfTnjfdN5JCSpJ
4Qdj/KXReK/eNDFHGUQktsU8kCOhBKbH9Rt7VeBNa+i+M0MMxM+bGvhObhMo
pTrtkfish4rrev/sbtgET/1J7qtbjNHmY3I5ueEEiH/VZF9ja44qG//FOUQQ
IHFAlgd5myO6wKdAnigCtJ8ML2rabY7IWQW0sEME+NGXtvwoxRxJ3cZwg1ME
mDu6v9KpzRzN9tBH3uYQoKtQ0FLJ2gJVqZvrSDcToOLDoI+QkSWiH8Bk21sI
gJOVz/OxLVHZI76V+DYCbAq9lDftbYmKzVpfjHQR4PRCbVVZrCXK9LL3qXlH
gDT3zvS0SksUmeh50v0XAV5wB8esIVshxsc93VlyRMhMzvbN57FGOoeL1GQV
iWBfXPGFV8Qa6Uv1n8hXJsIrx/laP3lrBE5mmrcxItz62s49om2NnJplMp/S
iTB/kMrlEGKNDtx97jpmRoSS90aDIY3WqCZOud94DxGiPiUFckfZoHpZd0Zz
OBG42vuuJhyzQU9rzp6xjSBCU5I06fcZG/RianazWzQRJiTEW69dtUFvQzpy
dh8ngnBhugTtuQ1atDu8LTuLCPwibi684rbIWPHNp7HHRBh3Cd7ALLJFR4qd
am485egN0L1FLrNFNapdaYHPiHDXSHqOv8oW0bXaTN61EKFg637fxGZbpGyN
F7W+JoLm7cdOESO2iCvyTujNUSJUhUVdWSaxkNGcmnHwOBFm4t15zmiw0KGj
pVLKk0QQWT2x4a8OC02dLnpxaZoISfMmbZfMWWgw9zIlaZkIeaK1zo8CWKix
+dRkiDgG6Yl8r09ksdCKLXeLihQG9yTdes9fYSHDV/H5H2UwWE7OvnWygIUq
3x12dFPCwOtH0AXiHRYq+bn/gTkFg8GzQ1qmz1hoIGoyZZWGgdOJDwmpLSyk
8Dcs6DEdA5W8cLuGdhbKXrNDXFsHA8+M/+j9vSyUKOMbTTDBoOt3rsbQdxZC
197ZfzbFQL3/k++uSRZaIniScy0wmOmWbuz5zUIHNVz6xVgYxPVdEAleZKFQ
MxsDbncMJkMbx9wE2aj4xXOxBk8MlkyPL24UZqPPdubjh7ZxzneqEKgVYyMP
T+O8qQAMyKWjvI9k2Mhqr87yF867UCzp/PEMiY0Ebfltw8Mx6N6zkM9WY6NX
pLfZi/sxMGuOjvhLZSOvL0fVJaMxiOpYYIoz2Ujhif2h4lgMhCI+yRzXYqPB
HOVmxhEMCurduXt12CjMpcmHdRyDXpbTC2MDNqIzLt7sT8DAr6An32ULG/1Z
v/NPSCIGJ+Knwpy2slHcc8HU4ykYnF2M71tnykZQ/LFvwzkMniiLRz43YyO+
4xWE3DQMtt1LmAuzYKM0fZf66iwMfDtq66Ks2chFEuM3u4SBriP+p8+GjaSn
Z51f5WBgz6UghrHY6GPXi2u+eRg0yFmJ+rDZqPDOlbGxaxxe+/bXUTs2Ckne
oxtbiIG/44WKJHs2ooRuTeAtweDuWTv2UQc2+mkq0plxA4PfHuLPvR3ZqFJp
UEb5FgYBLEF5ghMbxfyrDLlbhsGnsSN2PRze8jbxvkE5BlsLX3tFOLMR10OP
pZZ7GBTVXDOZ43BzhpqNWyUGpg4ZXDtc2Ch532LWYDUGO3wS8nAO27M7vux7
hEFjUajoGlc22qiWT1uqw2D1gVcAk8N9vBGxKU8wqPt+Odmaw7mDpk1SOAal
+06ds+FwwFNxkevPMBAzzN+jzWEsb3ibZjMGVWJpZAEOf499VPq0BYPmdPmn
LZzz7rqlTLPbOPdX19Lez+FITR/jd+0YUAwHkrg5rCescXZHFyf/Cx71xzj6
F8dXev90YzByabxriHPfpy+6NyW8wYBgtrFFm8OnrheHC/dx/KXvKgrn9Msm
4WBd3lsM7ty4HZTB6ecGfys+ygcMfkg8Wl/A6Xe3oYxzzSeO3wrZ+Zc4flyU
Hr9qPoDBg6Kdioc4fim9Pq/jP8zRH2v8fYHj79fygBMToxjcvAAGORz/b57V
7Dg0jsHcR70Tm6zYiGnRG5z1CwP9wNP/fnPyM6Ny857KNAZXn/7VNeDkq275
0L/yGQwc/ss9EGbCRmaPFLJa/3L8jVPlSuXkkz/752f3JQzC3jt6HeHktz0C
UYdWMMisVXrmupmN3KghjctrSJDzpL6nmZP/0Gt3fmsJk4DqaBlXyJmfnLud
AVWiJM5/+OTXn5z5evn4V6e2OAmuTD71UCNy5uG9dpmODAm6lCrifBXZaE7q
SZAegQTqTuEOL0XZSI38ubsGI8G7meqqSCE22qbLZbJZlQQlj08783Lm/amr
hby+OgkqJiocJnjYKCm9442BHgmi9qWtoD8sVFvw07RenwTt/pl9jb9YaLxC
9L7hFhKIDt2Xuz/BQg6dbue2AAmalVvX2A+xkJTgJ4utLBL0fD5IyXjNQqWn
Jh+CP6de8soz2zIWepspgj3bToJZl31r+G+wkGCxZqZpMAn4z9zRqeC8j/tQ
9D6zXSRIyJw415jNQnrLy2SLAyQw2SZBXTrGQi0xwjnWSSTQ8pewf2LHQgun
mfytySQIK6vebmTFQtSLLgdtUkmQvqtE9LYJC6VVXXKyTefoe3wgxkaLhTym
lNaxc0nAFnpeXyjFQqO7GUccKkjg0P76WeMHW+QUeGUX3wMSvOQ7ERD2xhbV
e63xfFJFAsHXlpSll7Yozbpfm1pHgljuhLTPdbZIj3R8kq+ZBImfZ9sLL9mi
pIGu7Q3vSLCz/ZmDhp0twjz3WavzkcEw14nMf8sGpTm81R1aS4YUm9VqxWs2
aMHSDMsVJEPkT6oPIdMGdehIcQuIkuF0hqHfn6M26ODGp/VDcmSoGxh0fuRg
g5o6heh5TDKMWbTcHJiyRkEW5RKCvmRouvHkc5aaNXLL2hOT6U+GHsIjy90K
1sjqK+WtXCCHofqWpqg1op0ozaPtIMPxoA99efNWaOZxAcE+ggzfElUE3z23
Qknamcz0RDIYDTjyim23QncIsXZS5WQI2EC+73TOEs1wmSYSVsjwbpfdCcN2
c3S8vYvvQ7kqDM6+W57JN0GbDh3wnXJWg9W67N0xOfrIzECxJ8pNDdLbq5se
xeujoMUX7HkPNejEMgvWheqj4jjFLSs+asDwqtL6oqmPCAmtsht2qIF1m7Wg
W8dmRDir1K96RA32RjVBNO9mhF196RxQrAZNBjwD/Cd1kYVfdNvX62rgKd1x
6kiYLgpRUjHdcVMNBKsbL3O56qLrhdHM8LtqoJ21XtcC00XYDRWRozVqIJ48
qF32QgeRKmI6Lr1UgxRbyvV5MR1ERgTrrmk16PO05n5crYXid0uaJM+qQYOs
0MOGa1qob6PAZrMFNfhbMPWsL0kLJYVOkmuW1WDTaPEw21sLjQjW8ucLUGAm
9P1ms1VNVOpu3xKuRAGHx3/E/Bw1EWki1lKIRYHZ+Zu71LmYKC47bOsLOwoY
L6YfHO1noJ6tfroJjhRIKaBmFN1joMR0M9KsG2e/dvDk5QAG+qYrxPcpgAIV
BS/kU5/R0fUTxc13oylwOPyK9+HzGgiT6jS3K6LAsT3JSW8saIhXWuJefwkF
qoLeuKwQaeibtI9ccCkFBlPj9tmtoaEbsmNTh+9QoC5SU9+lkYrIinz5Nx9S
QJBtepbbjIoo2NYFnpcUGD35zeO9NYXzvyq/WzdNAUva3MEXe1WRsPaMtOUs
BTKE3TU1nFTRL+0tp7rnKbCtrmZTlbYquq/b5j26RIF/UxM6yv/ISNNgmF9y
LRX4dnUaR6eSkQ4oBkbIU8H2S3YidyUJGTicl1S1oMLL2nPYZ0kMuWxW4B6z
okK33zZuvn9EFKZy50eZLRVYP2Rr7QeIKHe6tYnuSAUnOzmKxR0iWrzEe0Bv
GxUiWfHOz8yI6MmXo12WEVQQWrv2wudYAoLIsDMhV6nwId2A/+FfFeS17e8B
cgGnvu+3qz1fVVCEebL/9yIqXH631CbWoYKKJEt1996kgmR+UNC3fBXEUz84
FFVJBYENNj9GLFVQM483nGrl7D9abJWipYyss63/Fs1QITYxbw/3bQXUcY+8
1nOeChd30399PKmAXNr5JDcsUmFS91TjmK8C8udpZsasUqH8fEHEJTEFFBMB
u1iCNLC88eqa7jF5dN3OoH9amQbTqb/2evvJIS4+2kNzNg1OBr6UrTSRQUkq
gk0L9jRIkJd+ylKWQRuMxrrLnWhgDLGdQqvSSDrq5g9pDxqQP1/224hLI/og
EfuxnQb2XpYFIqbSyLdBISs7hgYgpkqrsJNCtdHCkcNFNJDzkXq0KUECtXw3
nd5znQZKRyIV4ndKoB6f6KjpUhq0o2TZRXsJNGX6MXr1Dg2kSpysnOQlEEW4
7IhsDQ1s9GhBkY/EUW6pZaL9SxrEZeMfdsxuRHH9cZcfTtNAq5e2Se2MGDrL
ui9jNEsDwnizoVakGMppGLrSOE+DH53E854+Yqi6hHX11RINXqc/9v7DEEOT
+2WKxvjVIaT1ocDe96LIX6C6TFFeHW4OP/9qqSOKwGCi4bS5Oqy5f8LvzKwQ
SsregZtZqcPWQ5v9XnQIoY5fg2jVRh2OHc/0Nb4uhLxK3zYddlCHNu8r+t2u
QihCvKUt3Fsd8tm/zh99uAEVThb2uu9Xh+1Vw+urTq5HXMUek6Q8dbAmhKA2
s3XIavn1z6/X1CFNJKo1WGUdOudlP1VQqA4ij9+Hqq8IIBkRiz+ypepgr/xh
l029AGLGaf4VeqAO0Ycb313XEUDbPTbwzbWogya2Wl2vuRY9E2xUaJlWh8L5
AayZzYfSGzIy3GbV4WHK+bNlTD7kHxHIPzSvDk7JcqwqST602Ms1tbqkDnjj
OJU2wIt0ikyaDNZqADnQpv1eDC+6ublhd7m8Bvia5k+O3l6DzofU1mRbaEDN
Q+VNf1V5kK90Mo1orQEW+kk6H0R5EPWlZ+EDWw3YcSmw6P1fbtTCmE/pctAA
9tePf5gd3Ijrn66fgLcGvCKfj9t8gBtFZVStiQvXgDq9hapzTVzI+2mFU/Al
DUDPxktfzqzg2SVdo99yNIDglpBL6FrBu5N/xu/I0wC3EsP6spsruI0rvXx3
oQa0VtVfYPms4Prfy9dFlGnAKMlEqbF5GZfZWN4Y91QDmpC5kH/hEt4Xekfn
0ogGKFxMOPXs0CK+kd3eLj2mAQY7o6rvey7iDsyJoCsTGtBb1kpo01vEWxap
GVenOHoxoYmDs3/xmgtlk8WLGnAot7Kg8uBf/GLd7dJ7wnQo6R8VzTuygLsJ
3ZJp06NDiJujWHfxHN76XoSZYECHwQr2DCFxDje6FWttYEQHZyTmXxA6hxPN
rWNum9JhoF91RJwyh08fGnmTYkeHLW9X64YfzOIZ37ALrCA6FJF+/Fh6OYN3
PS7i6zhPh+g6uZlU2T+4Wco6xcR0OiToiefcWp3GazwidYyy6GDg3M3+PjyN
X/sNwXdz6NCV40XqrpzG96oOoHMldLjEqE0wcpjG12cpxdnX0eHrxqTqgNTf
uE1Y3nTXNzrM7brGm6c4hVtc8DzmNUoHayz+7OZ1UzhUiwt8HaNDupzS/Q9j
v3CDlVTF2Z90OCJzLN3hyi+cmhlnI/+XDkFb7H5lLf7E19f75e8UYkDwetK7
0JZJvGudCotLjwGfvHl/HU2YwF/SP/ak6DOgaq1hS4X/BN7imhMgvoUB6D+R
IiGjCfzpNdFoMjCg1+XYKYf5cfyeJnehHYsB/9Jb5vv2j+Pp3l9nc/wZ8M1u
a9CbXWO46+3rRZpnGMBW7uUVPjyK3x8Wf8R/lgHxXLWD3z1HcWHCqY4P5xgQ
1ZyRPK03irfmBs6fzmTAf3rp6hmzI7jROSX799cY4F5Uc3fm4AiO7c9ZOFnN
AANz1j2FuGF8RuecY88gA34o9b4wLxvCnSP/hdz+xgBdsbK2+LQhvKI87Ej8
KANOT9C4Bg8M4bvItjfUJhkwRzahyxkN4R+l+f/FLTDgFbsn27v7Kx60bPIm
cy0Toj1EH31aHcTT8+b9lgWY8I8t0HBgZBDHDe593ynIhD3ftUppnYO4QozS
ipEQEza19XgK5A3ifT+X1EY3MuGwfCO+U38Q5z1fXeUswYQjbp0hUiqDuDZt
r/ETSSYcks4PGF3Lqb/zg2uGDBNOjnNf/NU/gON8WZ//yTJhN+XQfjIawH+W
sHbvkGeCcMbhL/G3BnAFM56ZbgUmeAYXPlxIH8DZA3XxW5SYsPFeW2PW4QH8
f4AE0FE=
"]],
LineBox[{{4.60404930602086, 89.57667988441771}, {4.60404930602086,
89.57667988441771}}]},
Annotation[#,
"Charting`Private`Tag$123885#1"]& ], {}}, {{}, {}, {}}}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}},
FrameTicksStyle->GrayLevel[0],
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->NCache[{{0,
Log[10000000]}, {-54.650651516128434`, 179.19267439508525`}}, {{
0, 16.11809565095832}, {-54.650651516128434`, 179.19267439508525`}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->FrontEndValueCache[{
Charting`ScaledTicks[{Log, Exp}], Automatic}, {{{0.,
FormBox["1", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {4.605170185988092,
FormBox["100", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {9.210340371976184,
FormBox[
TemplateBox[{"10", "4"}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {13.815510557964274`,
FormBox[
TemplateBox[{"10", "6"}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {2.302585092994046,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {6.907755278982137,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {11.512925464970229`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {16.11809565095832,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {18.420680743952367`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {18.51599092375669,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {18.60300230074632,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}}, Automatic}],
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{{3.7501430599438972`*^9, 3.7501431286119213`*^9},
3.750147016390205*^9},ExpressionUUID->"c0aa41b7-cab7-4f6f-bc97-\
9cd6a53ca813"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["s", "2"], "+",
RowBox[{"\[Pi]", "*", "280", "s"}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "*", "\[Pi]", "*", "100"}], ")"}], "2"]}], "\[Equal]",
"0"}], ",", "s"}], "]"}]], "Input",
CellChangeTimes->{{3.750147287098571*^9, 3.750147294173204*^9}, {
3.75014738140718*^9,
3.750147389999041*^9}},ExpressionUUID->"e39c6312-9ef4-401f-b4ae-\
6a9b8cef3204"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"s", "\[Rule]",
RowBox[{"20", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "7"}], "-",
RowBox[{"\[ImaginaryI]", " ",
SqrtBox["51"]}]}], ")"}], " ", "\[Pi]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"s", "\[Rule]",
RowBox[{"20", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "7"}], "+",
RowBox[{"\[ImaginaryI]", " ",
SqrtBox["51"]}]}], ")"}], " ", "\[Pi]"}]}], "}"}]}], "}"}]], "Output",\
CellChangeTimes->{3.7501472945760193`*^9,
3.750147390456587*^9},ExpressionUUID->"bd0bfabc-4b19-4f6c-93c7-\
21c20e9d4f89"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"s", "\[Rule]",
RowBox[{
RowBox[{"-", "439.822971502571`"}], "-",
RowBox[{"448.70918174495034`", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"s", "\[Rule]",
RowBox[{
RowBox[{"-", "439.822971502571`"}], "+",
RowBox[{"448.70918174495034`", " ", "\[ImaginaryI]"}]}]}], "}"}]}],
"}"}], "/.", "\[VeryThinSpace]",
RowBox[{"Rule", "\[Rule]", "List"}]}]], "Input",
NumberMarks->False,ExpressionUUID->"75a6a86a-ab13-4c1a-b15f-10e011bf660a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"s", ",",
RowBox[{
RowBox[{"-", "439.822971502571`"}], "-",
RowBox[{"448.70918174495034`", " ", "\[ImaginaryI]"}]}]}], "}"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"{",
RowBox[{"s", ",",
RowBox[{
RowBox[{"-", "439.822971502571`"}], "+",
RowBox[{"448.70918174495034`", " ", "\[ImaginaryI]"}]}]}], "}"}],
"}"}]}], "}"}]], "Output",
CellChangeTimes->{
3.750147306856758*^9},ExpressionUUID->"38ae0d2a-70bf-4b33-8b4b-\
81e4ed8c16bb"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Abs", "[",
RowBox[{"20", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "7"}], "+",
RowBox[{"\[ImaginaryI]", " ",
SqrtBox["51"]}]}], ")"}], " ", "\[Pi]"}], "]"}]], "Input",
CellChangeTimes->{{3.750147645587872*^9, 3.750147653569894*^9},
3.75014775858986*^9},ExpressionUUID->"4c8e0e4e-8ae6-4ac8-aead-\
fc7857a9c00f"],
Cell[BoxData[
RowBox[{"200", " ", "\[Pi]"}]], "Output",
CellChangeTimes->{3.750147655781896*^9,
3.750147759098975*^9},ExpressionUUID->"da14b9a8-5eb9-448c-bd57-\
64cfd5dcc4e5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"-", "439.822971502571`"}], "+",
RowBox[{"448.70918174495034`", " ", "\[ImaginaryI]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7501477704169073`*^9,
3.750147771933324*^9}},ExpressionUUID->"14fea45d-ac6a-432a-926f-\
14e46a34e0b1"],
Cell[BoxData["628.3185307179587`"], "Output",
CellChangeTimes->{
3.7501477723071537`*^9},ExpressionUUID->"def1447a-6fd5-4f4d-a60b-\
05fc15d4ee31"]
}, Open ]]
},
WindowSize->{808, 755},
WindowMargins->{{Automatic, 304}, {-175, Automatic}},
FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \
10, 2017)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 1860, 53, 123, "Input",ExpressionUUID->"b998a185-e69b-4bee-a9c4-498e435b5fac"],
Cell[2443, 77, 612, 15, 60, "Output",ExpressionUUID->"e5daf422-13f4-48a8-84fc-fafd40a825ce"],
Cell[3058, 94, 16237, 298, 232, "Output",ExpressionUUID->"93727638-18b7-407d-b7a7-a017accc2c99"],
Cell[19298, 394, 15090, 279, 232, "Output",ExpressionUUID->"c0aa41b7-cab7-4f6f-bc97-9cd6a53ca813"]
}, Open ]],
Cell[CellGroupData[{
Cell[34425, 678, 488, 14, 33, "Input",ExpressionUUID->"e39c6312-9ef4-401f-b4ae-6a9b8cef3204"],
Cell[34916, 694, 673, 22, 39, "Output",ExpressionUUID->"bd0bfabc-4b19-4f6c-93c7-21c20e9d4f89"]
}, Open ]],
Cell[CellGroupData[{
Cell[35626, 721, 599, 17, 30, "Input",ExpressionUUID->"75a6a86a-ab13-4c1a-b15f-10e011bf660a"],
Cell[36228, 740, 583, 19, 34, "Output",ExpressionUUID->"38ae0d2a-70bf-4b33-8b4b-81e4ed8c16bb"]
}, Open ]],
Cell[CellGroupData[{
Cell[36848, 764, 367, 10, 38, "Input",ExpressionUUID->"4c8e0e4e-8ae6-4ac8-aead-fc7857a9c00f"],
Cell[37218, 776, 180, 4, 34, "Output",ExpressionUUID->"da14b9a8-5eb9-448c-bd57-64cfd5dcc4e5"]
}, Open ]],
Cell[CellGroupData[{
Cell[37435, 785, 296, 7, 30, "Input",ExpressionUUID->"14fea45d-ac6a-432a-926f-14e46a34e0b1"],
Cell[37734, 794, 149, 3, 68, "Output",ExpressionUUID->"def1447a-6fd5-4f4d-a60b-05fc15d4ee31"]
}, Open ]]
}
]
*)
(* End of internal cache information *)