-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch3-Q值对共轭极点对伯特图的影响.nb
2202 lines (2183 loc) · 108 KB
/
ch3-Q值对共轭极点对伯特图的影响.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 110555, 2194]
NotebookOptionsPosition[ 110006, 2176]
NotebookOutlinePosition[ 110367, 2192]
CellTagsIndexPosition[ 110324, 2189]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"G", "[",
RowBox[{"s_", ",", "Q_"}], "]"}], ":=",
FractionBox["1",
RowBox[{"1", "+",
RowBox[{
FractionBox["1", "Q"], "s"}], "+",
SuperscriptBox["s", "2"]}]]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Q", "=",
RowBox[{"{",
RowBox[{"0.5", ",", "0.707", ",", "1", ",", "2", ",", "5"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"20",
RowBox[{"Log10", "[",
RowBox[{"Abs", "[",
RowBox[{"G", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "o"}], ",",
RowBox[{"Q", "[",
RowBox[{"[", "5", "]"}], "]"}]}], "]"}], "]"}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"20",
RowBox[{"Log10", "[",
RowBox[{"Abs", "[",
RowBox[{"G", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "o"}], ",",
RowBox[{"Q", "[",
RowBox[{"[", "4", "]"}], "]"}]}], "]"}], "]"}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"20",
RowBox[{"Log10", "[",
RowBox[{"Abs", "[",
RowBox[{"G", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "o"}], ",",
RowBox[{"Q", "[",
RowBox[{"[", "3", "]"}], "]"}]}], "]"}], "]"}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"20",
RowBox[{"Log10", "[",
RowBox[{"Abs", "[",
RowBox[{"G", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "o"}], ",",
RowBox[{"Q", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "]"}], "]"}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"20",
RowBox[{"Log10", "[",
RowBox[{"Abs", "[",
RowBox[{"G", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "o"}], ",",
RowBox[{"Q", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], "]"}], "]"}]}]}],
"\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"o", ",", "0.1", ",", "10"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
"\[IndentingNewLine]",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<\[Omega]\>\"", ",", "\"\<|A|(dB)\>\""}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<Q=5\>\"", ",", "\"\<Q=2\>\"", ",", "\"\<Q=1\>\"", ",",
"\"\<Q=0.707\>\"", ",", "\"\<Q=0.5\>\""}], "}"}]}]}],
"\[IndentingNewLine]", "]"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Arg", "[",
RowBox[{"G", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "o"}], ",",
RowBox[{"Q", "[",
RowBox[{"[", "5", "]"}], "]"}]}], "]"}], "]"}], "*",
RowBox[{"180", "/", "\[Pi]"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Arg", "[",
RowBox[{"G", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "o"}], ",",
RowBox[{"Q", "[",
RowBox[{"[", "4", "]"}], "]"}]}], "]"}], "]"}], "*",
RowBox[{"180", "/", "\[Pi]"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Arg", "[",
RowBox[{"G", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "o"}], ",",
RowBox[{"Q", "[",
RowBox[{"[", "3", "]"}], "]"}]}], "]"}], "]"}], "*",
RowBox[{"180", "/", "\[Pi]"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Arg", "[",
RowBox[{"G", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "o"}], ",",
RowBox[{"Q", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "]"}], "]"}], "*",
RowBox[{"180", "/", "\[Pi]"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Arg", "[",
RowBox[{"G", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "o"}], ",",
RowBox[{"Q", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], "]"}], "*",
RowBox[{"180", "/", "\[Pi]"}]}]}], "\[IndentingNewLine]", "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"o", ",", "0.1", ",", "10"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
"\[IndentingNewLine]",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "45"}], ",",
RowBox[{"-", "90"}], ",",
RowBox[{"-", "135"}], ",",
RowBox[{"-", "180"}]}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<\[Omega]\>\"", ",", "\"\<\[Angle]A(\[Degree])\>\""}],
"}"}]}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<Q=5\>\"", ",", "\"\<Q=2\>\"", ",", "\"\<Q=1\>\"", ",",
"\"\<Q=0.707\>\"", ",", "\"\<Q=0.5\>\""}], "}"}]}]}],
"\[IndentingNewLine]", "]"}]}], "Input",
CellChangeTimes->{{3.750148461780529*^9, 3.750148553051189*^9}, {
3.750148634604724*^9, 3.7501488049425287`*^9}, {3.750148954813724*^9,
3.750149130883871*^9}, {3.750149336311494*^9,
3.750149368176903*^9}},ExpressionUUID->"2460ec6c-65fe-4e68-9714-\
8eaa8a483113"],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{}]],
LineBox[CompressedData["
1:eJwVVWk01WsfPU6GzDJFyhjJkRQpSs9ToZG6GUK6KESEVDIlRaKQMl1EypjM
mYd+f8ON3GOqg5BjnpUhw+GEt/fDXnvttfbae3/bMlddLtqSSSTS0h/8n/XF
xXLzHcmE0XkZrbHhIuQcBCpN9mTieXa9dftCEQpftssZtyUTPPebVVpYixGt
vShbyopM6D2y6RnZWYzMXxpmhRqRCacXP12TbIuRHffzdw7aZMJha4f6xYli
5LvGliLDTyZaf/eVjq6UoNyBX/+8KGAhRIaL1fqOlaPw8J0tzrkshJa5hkS8
STlyQ8Zs57JYCLXGJc/rjuVII6H4FnsaCzGrSPmyL6ocVZp6nvGOZSGu1166
GjZRjhpb1pk2fizEeOnzJreoCjRcxWl5yICFWLSX9Dm9WonE46Tk+yZIRGma
s4g5ExA1/krY3CiJwKFarV6cBPJLiF/eNEwifHqqL/8lQqDxpK2NinQSwWNu
2Ce2h0DF6fwubl9IxJ2SvouCVwh0sWijlK2CRPQ3hLUUfiTQ09a+c8ohJOK5
k4XReFA1YrIn3fFUIRHmQ/nHErRqkVem8Ms4CokYK7N5EnKqFq3qB+dWKJKI
9cVq5mOTWsSIdJtckyURYoo1YTFutWhJVtfq0VYSoUPlUdN4X4vmj06efUYi
EYNc2fvsJesQ7Ye9nlbqBmylVSt28PyLPjS9SH74Yx3ClRwepnPXo/2RoWdP
jq2DzuMZu6Yd9ajAPPgXz8A6XGlNrWBRrUd5Y34n/qGtwxd7v4Eoo3qUxeI6
lFOxDq39Sg43E+tR2gEDue/B6yDtsKVnSL0BxSVwJWsorIPBrvblEzc/I7+b
/m+n/l4D9vaB+Dd8VJTcFZsnYbYGbPt/6Z2Vo6JPunkfzxqugfoNXjPWQ1TE
I9nb/f7kGuh6OA2kWFPRP80aQk6qa7A13ag5qYiKcvdO+k+zrMGbBtbIMKsm
RJ+7YPsj5TfwyE+kxdQ0I213ScWZSSZsK8xnbO1tRf3WJ5PfDjOBLy3EKnqy
FQXou0qa0JnwhJNcJcVoRY07a4Sr2pgQQP7bw1CoDZl8tWV5VsoEu0IeJjrT
hlxVs7sVAplQF5lncaC8DSVPHg79W4YJB9htsmhvvyBOS7P5pkurQN/J2CMR
S0M6YTPtiX+tgkcGc8zkHQ35VT0uczm7Clpj5emvy2hoSaLAbwtaBSRZdM20
m4YGv3HxGyusguWb7PXr29tR+cVKyveFFeiv1HTgTG5HTnpStpMvVoDnbLBl
SnkHatkz0slOZcA6wRrWKdKFcsjRMsc/McB+bMTYXLELhXTqOd4nGGAcTRWc
0upCZx5mrP8qZABrRUSMhlUX+kRzlB9IYECY723yvfddqNJ73q3ChQGvrGp2
pet0o8zPG7yuQgxQUCOtCz/qQY9tt+l0mS/DUGPI/UYKHQ2X9a7GGC1DgF0O
nUuHjnT43uSbGCzD5uw1bGlBR+SSXVK0Y8ug8DnUQCeUjnw3H1htVlyGebVJ
d5ZZOnJ/fz6vbmkJ3mpyPLhU1ofs5wK2571cgtI2UfJKdj86c39mIbBxEbS2
Uj1D3AaR/r2mLXl1i3B81j7Mw28QXbj1XqXr4yKMGwt6u4QNIhPb6/aUD4vg
fcmZ5Js5iKz1+3pa4hdBgnyxVHJoEHnsaKkRu7kI2Z6O/e4mQyi1Kic8k38R
XK66ztXqDiPS+k3lZqMFOL7KWbN2ahTFHy7LFz6/AH+JrbyONhtFGp6sBy+f
XoBovgmjIzdGkeNC3LFx7QWw0Pd2znk2ijom603IuxYgMsA+VKVlFGV1yjzU
WPkFgexFmzJMx5Bpfnt7YsIvcOp2w813x1GejfYDl9F5uDPD9+pBzyT6Tyb+
lmb/PDSLVd22mptEo3TGtU3d88BUlfhlyDGFtpsVnoppmgeHHiWV22pTKEif
IgiF89A/7+MbGTKFrDTEU/n85yGYvYjH7fg0Eti82JgtNQ+v/z23IVb1A7m8
zxKdNp2D2LvT/ns8Z5EKn7yLtOEcXP14J432eBZNuybUG+nPQYDMPf7Al7Po
hkaYR9WxObig3tPFkTWLbKpdusOU5uDL2S6joL5ZZN65P3Hf71nYEfdr9+NT
c0hvU5n8vdezYHbQP75Adh4dKX7qwEqdgbyt6qWyq79QuVfSwm2YgQohIe0V
rgV0CBU/GCqYAUIja4YusYDUGwaiamJnIK3ko8Q37QWk3H2oxu/6DBgtXjnh
/2gBSayPblsjz4C6v0puI98iWtU9QV3U/AksxerkF2pLqKydqTKWPg0JdT5H
uvMZyE5m+umL+GmgnM4yfv2JgYRvfh89/Hwatqi0293rYSBX1qrEcPdpOP35
N2HFtoIU1Xz5tHSnQfRpTvA28xUUHU76GTI4BfFTjxyPcKwit7Ns2ft3TEGi
7w7OFlcmUqrmo/i+nIBDzJcyRwPXkZSpuuFa4ASUH32Y9z5xHQnPmHn7eE8A
YfCzV6VkHW1sT/3Py2YCsmbbnN3H1xHN47DTPY0JkDKWmuA5t4F8Ve2zXbvH
QVjqr69F3CT89XX13muy47DCiFyj9pFwg8bYpUHRcZhd+o+484OEPzbx+Flz
jwP755QeRSYJZzAvtVoujIGqY7l+sSgL9r3009Xi0xh4lc0lXDdgwYr8EgXG
N8ZAy2kXSZVgwT6+d9RPFYyCz6aJvyuzydhNGDSaU0eB/jgy1OQjGdtncmoa
xY7CeIycHUsLGRt2JGpb+Y1C2tvjdsGzZKyk8lnPw2AUUqFj0EZ9E/7Wu8Ms
Y3IE/nzwYQvYhNW16+9vlhuBEs0PPaODrFjp6xa/MNEROMrjK08ssmJpB4tH
wlwjwMW/ayRrMxvmjpoLlJ4bhkRZw93VKmx4cFoi/BAMw+zCp4BObzYc/sr1
rf3lYciVreb/Is6Op5ni9Q0RQ9BQMlZfYcuBd/fGRskFDcG0symj3pMD230U
t/H1GYKMWmux8VAOPOAnzqJuOwQkVPnUppgDd7CJH36tMQSu3vSVC5s3Y4Jf
LPdu1yAE+7yJ5MvbjCPlRGNkpQaBs9XvVDc/F25jjba9LzQIoc3htTEKXJhv
VET9G8cgzF50SHDS5sLBGSJtobMD8FSgbczCkQv77hHhXqkegO8bAYcvN3Bh
+4PCD1psBqDya3vuZCA3PnJW8LpPZj98mNtJQlt5sRelhJ+e0A8GlUePG6rx
4lJui1L0oh/aL6ovPjnPi9WoqZybPPqh+lWAi2EQL1bS18wK1u2H0Et6Wz2Y
vFg1kRjcU90Hd0Q9H+4c58NjqRbLV/fQYdfhl7XYWQBftUs7pSBMBwWT668D
fAUwXWE2dmK1F/6r4pT8HiaAaen+R1wbeuGMvIDfp1wBXPMu8+H9a73QK59z
NmReACdmM7j/if0OOfnuDxjeW7BJUaR0E1sPlGp9q9Z9LYj3BUQIsf/ohuGv
7+JG8wUxj+FLdkTrhml6TFJinSCumX0+nfe2G547pVCNJgXxXuVnpZGoGxqP
ao70agjhzckPL1h4dsHsyS2KgTQhXB7u7Dc13Qn5ll+fm8mJ4CjLm7d30jpB
p4zqoqopgl1VnOyuVHSCxJXRKbnzIliB6nCuJbgT2HULH1h7i+AIDluxDwqd
UHCr+PWRdhHs5Hs5z8uqA1JzBDyTwkTxDqdT/Zw0GhRX3mtPFhfDQW35jtOV
NLDj5jhfvk8Mz2tILDen0uAb7dfXmdNi+BPLT97IezSg9D9vK/USw84xEYcl
JWgwLjTm1NArhqGGHr3/6ldQDQya5c0Ux9bid/Uvz7YBozmtu85CAlN96d+0
u9rAdYdT5G5PCawxfNJGuqYNItnk3hZGSWCu3G3eIxFtEL5mVHG0RQIX6BAZ
LgfbIO9UD6uSzna8yZWbNcC3Fd47jS1HH9iBT4eeuGsm3gxO5tNX0w9JYWmj
zAXNsSY4rMmU3HdFCi9t23JnW1ETGH5Xnpt7KIXfZtDdei40geah2kPbqFJ4
tdbT9UoQFRzsRm4/2SeNM1dzHa2XG+FaivzXiSZpzGO//apDez3Yuxtvd98h
iwdV/AdOJ9fDxz1jil5qsrh0ccJK6VY9LPfSjySelsU2/iWWUzz1kLLdpVLP
XRZXJV68clPnE4iVSlzf1iaLnduDTG99qIPJ5m98zSFyuPX4ooHni2pIF822
zJGQx3Ua+zayrlYDl2L+7u9q8rhU6WZuv1o1nHwXcULmnDxOEhzhP9VBgIFm
m++Mjzy+NUhrFZUg4MnwPkZInzzeyeqQan+6Csw4RLcfyFDAGY/GsuguJaB0
bEpdGivi8BuWvHqCJSCwETsZYKaIPS523swuLIY9slLWPW6K+LRsvYrPShHw
k1mfGKUq4snqtDxx/0JIepsSpMa5Gyuz2BUaRedDnGyUw4HG3Vh4ole48lA+
cMV4fXYf2I1/txrflevJA+3Gfzm9GbtxU5KuxrxUHrj8u1esSl4J9/qdcZUy
zIaLW26Vlvoo4ZwLWvt+xmTBqEiKePILJewrrTRf+f09CO6t69+bpoSlCc47
5naZsEk4+ptksxK+utFwL8ozHfRaVl2+iFGw6nFrvS01aRC3ZD6wspuC1wNW
hEO50sDBOX4wWYuCY7mUCgLiUyA2dvXBTXMKttOv8SMNJ8P3XVW8AQ4UrB5u
ft5HORlyonSEuD0ouFXk2fTtqjdw6JP7U9MICk40lauYYXsDj9rkhUSTKNgp
viLY0SAJxusFTu7PouDblel5zXteQ0d83peMEgrmO/5N/9PHBNhs1X7nbg0F
Z9Zvnqo6/woGYuJYIqkUrKuvGVTUHwcVSba2pA4K7v/iIJ99KxbS706mF9Mp
2Mc0riaF/A+8a94/UzBKwWL0RstXEdFQdS350dwPCv5wjfk7YmcU4MnVJucF
CjaYoMQ9K4qAvMN6NrtWKXjS2eKgv95LoC7VkcU2KDhwIYTm1RkOvl1lEdqb
lPHxBa+h4dYw4OKR3RfFrow9N3p20OafwXi8wa7tnMo4j0vbtFY4GLZ7Xl5u
4VLGYyKJLws0AkHgxgOzHG5lLCmzQX1j6g8qsaqo6I82VrbieOHlB7RX4u2D
f/xiLo/8SZreMCHXE3DgT17gYx0G3ecuXGmIXnr/p2/8IG+310MXMJpCgrp/
9tTZvKg9yGkD/VO5JNKfvVofklX0+E1Bq+M8+0MmBf8PQ17bUg==
"]],
LineBox[CompressedData["
1:eJwVjnk41HkcgGd+7Ch3bR45Mq4c80NFGSv6fvKrnrCpIYxKakRIid3KEZVx
pWTJUemJMoiSK0THfB0lOUISairHoppVoxGqzbZ/vM/7x/vPq8cLcfUjaDSa
20/+99vKfItNKlzUxx33Cp0koX3cO6v3RSBayLaysP6bhHBRcJ/C9TAkmn5S
kvWKBPmWkr3m+8KRh494t8YzEi6XT4hddGPQ/S13HISPSXi7vpLu2B6H3BxP
10dUkFBszWnxKklEYWYVUWkCEsLIT2eDkpJR682qpp4sEmLl1RU36f+FAh9k
Ph0MJ2EsbuyQS1oa8rHzTCsMIMF5vrrbg3YeDb1U7y7wJGGJdHv2/teZ6GvD
9yknq59/hwy/hmzJRkkGkTtmmCSIJj7vCr93AdUuWrhxVIGEQlG6/ulLOShY
7Mo7N8SCy74THu438tBqVrA4LY4FnbrbkgZ4VxHnIiu67AALaK9r67w1r6HP
RlMfzV1Z4MdN1PY/nY/yOy6Y+yxjgcUWo+Gj+wvR0qj8ZtVSU+BqrgtNsShC
4Zrb5FakmAJ/3J0mmC5Cbcqo7V6wKfSfitfp5heju79GVdqzfvaa0R1k3k2k
FVK4ICzXBMSp3e9CgisQjbOYcDpmDA5zqTzDglrEcl4i1f9uCF/8GCWbFBqR
SUjz1TuTTNA3m9Gu+60RaRlpeq0sZMLWqfFUMqARsfdEJA94M+F6TOsR1YeN
qFV9e29jhw7szD67fjCmCcUbCT7Nly0D/HjxwMGpZjTPdgo4HqMFZ0jmgsyB
FnTYZ/Ligw3qoCth+48UdSDds8PvU0aVwfluxmHbwQ4kYPIGp32V4Wi8JDJN
sRP1ZihrdIwoQZvGjVQU2okYPm01j0YV4aiDTl2O7VPUPWTa0vNBHsYcCUaJ
fxfqkqhVlyvJgV3OBJc3143Eqfxvrux5NGFf/aNH5zl6FNcccKm5DXl+kBc5
//4SMU8t/uwdysD8SO9tZYlvUYyxzc5oSzVsJ5w2iS0aQaq0W5IOBSZWs1wr
1UsfQ1ktndnebQZ4rv91ktKhdwiTFuLqBmMsFDpkOCSJkaHAvD1LROKCXrf0
DQc/Ipd6qWZt6gpck5Eus3mzBKkZJ3nhulWY1cdhbxdOocgns3sunbDC+avw
VsYKKeL1SMadVq/BSqXnDET3p9G8dGQ2icHGicKqw5qWM2hndBNd/rYNnpLY
RBx/OIuAOKnAP2mLfdcd9I/jfEXkmTKDOLDDo3qz7VON35Cy9bOTx97YY/fl
I5Pxbv+imAJPk8YrCPcJDZNPtP5AP1yVu4xzAVvUy8eraNOgUt1doBK0Hgca
Vl2TDNOgac5nLmKjAzYbZPybcJkOS6I+NRctorAJ82lRUy4dzGqreNZqFF6+
L9uVlk8H856UmealFNaZNL4eUUyHNWoCxjCTwqqEo1twDR0UE5bf1bKgsNT0
TDGniw4ORR38FCcK349Q8dCWJUDdXvZhEJ/C9Q9e0LzkCOjS+MNtNoHCNTJ5
NzLlCXg31D8Qn0zh8pSVdJVFBERW5HfmpVH42lXOTboOATz+JLcvl8IJreeJ
cTYBsecXfEH3KByrvKvUYC0B7YHTjA4hhU+4GXL3rCNAVgCqO5ooHC66XTqw
gYB+PwXFP59QOEjynNvOISBjRLe4qJ/C/tZXZBa6EyDXVBa9+hWFfaP8b23k
EuDW0OnU8IbCu36ZkRHuJsA283nn4BiFuU7CW9/2ErA3pzV+/3sKu6cmetn4
EZCo579G+g+FXXu3yh4JIMDSqkJ0UkJhF42lZRUHCOjrK49Rmqbwf3dYa9o=
"]]}, Annotation[#, "Charting`Private`Tag$148521#1"]& ],
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2}]],
LineBox[CompressedData["
1:eJwVk3k0FHwXx8dSIUtCZiS7ElFJE8rz+1UUylIipE1ISZZHliKEskSolJQ1
HruxZe/OILKrkGTfl0GWQdbX+8c993zOuefc7z2fc8XN7S5aMhMIhPHN+n/X
IRGzsm2YqVIq6gWLPrnovj8oNFgzU7mdQuKkwnNR6KJV5qglMzWGH3quxOai
ltb8DNEbzNR9mmLOY6W5yDTcID34EjP1Ms+xXu+FXGS1/UXKHTVm6vAnwu1M
mzz0eG3LR3EeZmqw+mkT+Wv5KKtv7m1YDhM1+Jq78QvLAhQaKtV0P4uJWr9T
9MKGSwFyRIZbzqczUeMHc7s9AgsQ+cMnh61JTFT8V3EkKasAlRq7aT+KZKLq
hvAwUpYLUG3T+oqFFxN1wajk+uOXhWiwjP26si4T1SmbTTu/uQiR3olK94wR
qKmTu29Jupei+qirITPDBKpb35MM4bBS5PUhapFlkEAteFr8UDqpFI3GCtbK
dBOofd70OsvmUvTpPx47x+8EKtHP/UW8dBm6mL9RuKWEQDUR9x7b9aMMBTb3
nD/wnECtUzUhI1VAK1tjndwUCNRjbEmwT4SGHqbyh7+TI1DlDbtq/GRpaFkn
IKtEhkAV1/duopNpaOmV4/iaBIGqfdBhpFWPhhYkNG48ESRQfxfnsAg8oaHZ
f8bPBREI1MnDivXnR2moZdL6jGriBhDr2N5/LylHuQ1hCd6T61BefO3ZV69K
pPgq+NzZkXUQTGF0dIdWohzTgDnOvnWwoYn2M8VVIsqI1+m3LevAatd85D6t
EqUz2Q9klqyDJp5g7mP+gpKO6kp2BqwDfb3/qrL/F/TuA0cCee86UBJZVJbe
VyEvW5/4iWtrkFP23ENu5itK+BVJ2W2yBhlD8tNOLDWoSoPy+ZzBGow6CA7U
CdQgTpGujrSza3Ao8/zDeNUa9LaRzHfv0BokJeX5zPnWoKyD4z50pjWwS9nJ
piBci7pn9C0nP65Cqhdnmq5hHVJzFpGZHl8BZDzsmTzfgHpvnk2IH1yBah/R
j56cjchXx17EqHsF+GMsJu9INaJaqXL+sm8rkKKYLe96qREZ/bBkCipcAbLU
CxGP/EZkfyijY+/TFSiQkikgP2pCCePHg6+Jr8BxT7XYycBmxH7dZLbh8jKs
dYjhNo3vSD1kujX6wjI8Spk3lLr0HXmV+RXZnVuGiNKJMg/z72hhd44XL1qG
Sp6+5Iue31F/OweP4d5liNwzRPcr+o6KL5bKdc7/hdDMCiOhQz/QvTOiluNh
f+FbHXeM2t4W1CQ/9HNr/RLMTbpkxyq3oUzmCPFTVUtwYkiPc1CzDT3/ecbG
g7oE8nq8zkdM2pC2d/L6XN4ScJasvVtwa0NVLTbSfR+WQJD8/QBPaRsqfTTr
WGK3BFKgHhV26idKrdngsudbAsW9en4iJu3Iz1JI/ZfpIrRn+F0NyOxAg0Vd
y28uLYJB7NBsZUUHUueOyzbSXQTzi5UU3l8diLlgn2jLyUVgyd3d083yGz1m
O7rcKLMIQuuf32qZ/kbOaXqUyoUF0FWoULPl6ETWM77ClPAFCCRMDRm6diFt
j+n5p7UMyHVMmeM+24t0XBp4KZUMaJl+WXnIoBfpO6Qp/PrMgHOFsnVXrvci
I8vb1nK5DOgh6UQ0uPSimzo9v5uiGOAWp/FHLKUXue5pKifaMuBpEdPeYK4+
lFiWGZrKwwATLx4XSlcfIqzbHmi8NA+d5uwL3e8HUNTxomx+vXlQyemROpk2
gMhurMeuaM2DfWmLUGbRALKZf3dyVG0eKr5meyS3DaC28Woj5n3zcFC4a7sY
7yBK/ynuTf47B1rValXi/oPIOLu1NfrDHCSPcfFkPB5CFAs1T7vhWSj7dsdt
+MUIqhOPclDpnYVd7cy2JfEjaLh76RZLxyzg83JNMfkjSNgkT/NNwyyISLHy
v/k9gvx15HZC3ixw3bLlPykzim6QSYncPrPwt3ypNKRyFO1gY9RmiM5Czqne
jw7s48guLX0X3XgGAgtno/2r6UiBW9pOzGAGtHluewl30RHd/kP1JZ0Z0A82
ZqfN0tFdcohr2ckZOBCRfPaEyCSyoNl1hMjOwEsOPLv6YBKZ/lSMPrz6Bzju
sLHlykyhMyxF0i4xfyAH3OcuRU2jE58C77DWT0MBOfLBZbMZVPwwdv5fmAZd
dWfFgLszSBl98hzImYagHqvJKtcZpPS173V55DQQF6X9rV7PoAMdyuVet6dh
fxzN41jTDNq9Piy0xjwNIzu+TO/XmEXLGqfrGSpT4HQiDcWozqGi1hWFkf/o
kDcddPemLgNZidMDw6LoEKVjNvPuOgPx23YOH39BB5HQhtF+ewayZy2LDnWm
w7Wdt82iXzKQzJHH3KoadMh8W15a+YuBIkIJU8/7J8B1RLW4w3oBOZ7bkqG4
ZwI6J9Ia/cMXkSyNW+5x+BhE1Z7iXt+1jESNlQzWnm7ya/aVJtllxD9t8sj9
0RjYJuYEZv+zjDaEE+seWoyBlGH9lwSrZdTievyeC3kMglek+M4ULKPHh6wz
7DtGIaUz/W7wlRX0I4Z28JbEKKgdzNzhS1lF7o+dlDRzhoG8HKxNerGBHPmB
3Jg4DOuJtDDtlA1kncqucilyGKQnak3DKzaQQVu02g2vYTBdbgLLpQ0kq1Bz
xlV3GJjWDq+EHCbg9q49JsnjQ+BCUI1zjCZgJbVqDzbJITBt6fCV92bC9BVS
9deXAxAjE69JuceC93dFvpb0H4Cx+ZU3Px6xYKvPJIvH7gNgnUucYQ5iwX1e
JCYlywG4NqM44JfCgtu2kI7HkAfgSOD2oj0jLJjKQ8x68Ksfdtx5VvzeghW/
ktz1RkK0H4KrWTH/nS34xLmdt91Te2H/YU/pz5Hb8EO5Ap7uD72QOlL3i5Kx
DRduNytEYb0ga72NlEfbho/UJ7KzuPaCkPN+M/rYNiyro5IeoNEL0UEqE1LH
2fChaGq/PK0H7Cu2PS/rZcMjiWaL5vLdcEV7vpamzIGN8l+JNWz5DZljFKy8
hwsf9n3Jt3WyA4RGj2pzHeXCnAbhW1FLB4Rn9+C581y4/M8LOiW+A3Sq/Idm
3LnwwQNBha9QBzBpsD4r6uLCbAne+mZuvyDWx7PoXjw3Lg697zVB/wnOacf5
dgjvwHvuafayt7SAz+vtY5ZfebFW8OkHJqRGWH1U+dlVUACLXUqdVxlpAGOr
5KGv0gJ4QYjXSSi/AbZFlgCfkgCOT+52/K3fAIETIWff6gvg5Qo3+6v+9fBG
vNrOIEAApy5n2dxcrIVj8UfqT/8VwJzWwuZ3Wquh9u6bqXPNu3C/gk+fVkI1
lO7uVFbp2oULGWM3ZB02efzVUf7xXdjCp+D6BGc17FicPRHGIojLoi9etVWv
gofdePjtUUF8v9Xf2CG3EkI52O5ZvBbE6u+nf17wroTdBQvW9FhBLHTL6LKi
XiVU3W08ZpIuiKv+SBrNjVeAqqRQZ3e5IBblBIMHEhXw78aufv8pQdx8iqHr
FkYDl5H7F78iIq4kH95IN6fBST96MkWTiAtlbbN6j9BAyDBDx/UCEcfuHOLR
bKNCY9LNUwnmROzQ39K8azcV3FWfT1/2IeLadHHm1+0AZm+UW2WDiDjnVaT5
6kOAHTQv5/ZwIvaxCJCsg8+w9z3jNS2OiKVY7yRaa5XBWmLPt+IyIuak925p
niiF1nQtCYNKIp7/YWx1LKQUDLMknGm1RPwlQXPf1h8loM4u+mXPTyLODKI+
s31QArWrKiEcXUQc8a/yaItgCWQ31y7U9hOx1WmZlASzYvj4cRJXThKxrlws
+/aNIqiwK59emSViMh/xrmNcEYBbejvrEhFvG9gmd3K4EBice+efMZHwn1rP
oGT/Qige6ZknbCXh9pzFCR65QiBaiNZrcpBw8pOR9G67AvgnCz6c2knCoXev
c53ZWQCpvFPWcwIk7Hrxp21G3ieIoJmm25NI+IaqXiP/5U8Qnpr3rUiYhLUk
qhXc/+aD8XGt042iJKzIgV4MROWDcgvfvQwJEhaa/TSt/U8+uN9sKDCSJmHm
DgX9nN48WBBZDa/ZR8LjtCQKyScPLJ6w2GyRJeHvKSK83tJ5EKullMl+gISL
wyIcRqtzoTuls65VnoTj3bi/693NhbX3xkp3DpJw0M2nigWcudCuJWFScYiE
nbTWw0WyckDdtz994DAJmx12nvO7kAPpN70TahRJWJ00ZTA5lw1J3eQcpyMk
fIDJKu9SRDboh0fpDW4y/1gXf6lyNrjZFM0JKpHwarPhA8nfFHB2EibybPJg
YUNroAcFLCIHjtVszjfEapBnRSmgZ/utSWOTbXgfyef6ZoHKuNk13819J/ru
TnnXZIKQTPkt3808nNmmWfrcmfBzK5+5xmbeLi9te1GDDBitOttVpUDCmfqq
h6fepEPzc70rbJv3PhaTnS3tTIO5WjELdjkS1vtDyg0STwNacI13jQwJi1HZ
nUytUmEw0RNr7t30/eKv0v60FJhIoyj4SZIw7foYY3E6GdJ+8XZ5ipGw+cZX
l9du/4GZz9rX9E2fh07dPMNbngQ+c9rrM5u+133/8gdzJIHZiMM8g5eEIzlk
c3yjPoIHpzFFmZ2ErXTKvQiDCbC1oazcmZWElUJN9dwPJMB45q2DjhtE3CwQ
RP+3LA6mgivqY+aJONpYsmR6Sxzs/Vhx7dsUEd+LKgmw0Y0FVcX/uGCUiLlP
tetUff4Ah1Yp8Q2/idjd+F35R+a3UHeVz5bymYiJ3bXX37+MAJ3sqxEln4g4
99bK6kup1/BPSMmoVyYRj983O+ZzJhy0GqzPqnwgYgqHmnEFfwBc9oq5YOZC
xCMC0eE55KeQce06n5ItEYuIb9THGfuA4U35hsrN/yfaPfEhqDyCeAOphh06
RKyam6BwhscY5I5YBhAkiPh/hEeB4w==
"]],
LineBox[CompressedData["
1:eJwBsQRO+yFib1JlAgAAAEoAAAACAAAA4LKjLkYPWD9iOJQw4QcYQHjdbNYL
qHI/7X5GPxvrF0DgQbIBScyEP6w0d/tvsxdAqTZRx1mqhz+thflE06QXQHIr
8IxqiIo/LHPOk++VF0CCChcMRiKQP1YEMLdTdxdAFPRUl2felT8MDMH/zTYX
QHhuJPpvTZc/XT/6R/0lF0Dd6PNceLyYP6JRTNPmFBdApt2SIomamz/f5fKM
6fEWQJxj6FZVq6A/m3KtJrSoFkAuTSbidmemP1x1DiGcCRZAWBo+cY0upz+8
5a3NwvIVQIPnVQCk9ac/hFaa8pzbFUDYgYUe0YOpP6o+9phtrBVAg7bkWiug
rD9MYDGujkoVQOyP0elvbLE/Y7e380t5FEBC+Y9iJKW3P3OVIa8KpRJA198b
qq8IuD84zONjwoUSQGzGp/E6bLg/BQB9kUFmEkCXk7+AUTO5P/IkeTOZJhJA
7C3vnn7Buj/Gsg+twaQRQJdiTtvY3b0/4RvDvJiXEED2ZQaqRgvCPwKLAT23
uAxAIiz3HLk5wj8GxJZuunMMQE/y548raMI/DB2yNYIuDECofsl1EMXCP6cm
N79jowtAW5eMQdp+wz+9B6Lui4oKQMDIEtlt8sQ/ZyPLhlNPCECLKx8IldnH
P6rIGVZiuQNAIPE3ZuOnzT+m9TWGynn0P+g9tf7SHtU/5F3Yxyk+9b9X6wrd
S0zbP5yRicAdbQ7Ag3pdUK+H4D/WK0KAh/wXwDy/9SiCp+M/VCYrGRqCIMAV
Mjv0IZLmP/yYuXguhyTA+djeiA1u6T/geQqcc1EowL+/QpRCiOw/TtrJEipL
LMCl1FOSRG3vP4nGUmj45S/AtpSSA0hI8T/K96vjbNsxwCrWUTdUv/I/StjJ
TZKaM8CjMcBPBi/0P/Y8J/EhSjXADa2OI9299T/oCwEEBBg3wIe/s3AaMvc/
RqQbfE7COMDy8Th5fMX4P+jmThkCjDrAYz5tZoRR+j9wVP8O2Uk8wOQh+Mzy
wvs/RTIC4yrnPcBVJePuhVP9P+Q3eWkGpT/A1r8kin/J/j/rMV+xvqFAwC66
CoUPHABANU5+PDZsQcBpJLOi8eIAQLFeALQ8R0LALNoG/YacAUCvzygTHhND
wCgfz6fDnwFADmCVe6sWQ8AlZJdSAKMBQL8THtw4GkPAHu4nqHmpAUDsvp2F
UyFDwBACSVNstgFAbu0Je4gvQ8D0KYupUdABQGuNIvXwS0PAvXkPVhwEAkDW
QqtRvIRDwLq+1wBZBwJASqy+yUiIQ8C2A6CrlQoCQP0eszrVi0PAsI0wAQ8R
AkC5bFYH7pJDwKKhUawBHgJA2LMoTB+hQ8CGyZMC5zcCQOqf/IiAvUPAgg5c
rSM7AkBcstGRDMFDwH9TJFhgPgJApdjik5jEQ8B43bSt2UQCQNx/z4Owy0PA
avHVWMxRAkDHEmwT4NlDwGY2ngMJVQJAM7675mvdQ8Bje2auRVgCQF5Fc7P3
4EPAXAX3A79eAkAsdS85D+hDwFhKv677YQJAzNk+8prrQ8BVj4dZOGUCQCuS
y6Qm70PAUtRPBHVoAkAx8dpQsvJDwE4ZGK+xawJAYkVy9j32Q8CuqCdp
"]]},
Annotation[#, "Charting`Private`Tag$148521#2"]& ],
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{2, 2}]],
LineBox[CompressedData["
1:eJwVlnk81Nsbx2cmpBItKOraUyGppL2nKGskyVJkKRO3bEVda9zkaiFbQje5
1JDIhKLQM0pI1syMfZ/QGNt8ky385vfHeZ3X+69zzvvzPM/rKDp7WrhQSCTS
D8H6/24qsz739WUKI7Blz8xdeRp4RKBmrSuFscrm6IaA7TSInqK+GnKhMI5M
12ZeBxowWW9y5B0pjBmVb6rRDjQ4G3s6O9KSwjCv+DPWNJUG1BUPXrgdojBo
N+/ZzihnQPC88DNFCQrjdbiJ80ntTMjtJRJj8siM6vyvaV3+WRAdrVLvkUtm
FCuPL4l4kAVX4YzwiWwyI7BAxu3osyzQefLWW4RGZtyOCvTi1GZBiY2fcUAS
meGVHVLDU3wJ1fULcxdDyAyJxISnq2tfAqd0mcNeMzIj+m+VGiGtHJBJlt/U
/YPEEFafai6RokPNY/uoiQESg+zletpLkQ4hTx5PLeGQGDN1245obKPDUOq6
6i1dJEbzlxe3S4/R4W2GhOfVbySGwroFV30fOli8WSwSLiYxWN5n+n8x6XC3
ofuExn0SY1JJVHLh39cwJ5Lq46dJYvyiho6KG+WDf5ZkbLI6iSFrGaBUbZUP
s6Z3cou3kBhucoZCDy7mw3T8Ve68EokRZ7yatzskH34pHXf8ex2JUWBpIzpT
mA/8w1yTeyQSY/PpAaezWwuAOeKqv//5Ir7sOzL5bu0byK+NSQ8dWUDuuG9c
sGgh7IyPNDEYXMA1O1dZH5EthLyzdwix3gW8qqaSKqFRCPTBEL1E5gKWjTVy
2ScLIZvs1f+qeAFz9twIXJZYCLTdZsoddxZw3srfb6l6ESQ/WZ6uo7qAPrZt
cbnn3kGI+6204fPzePgUU1icWwzprUn0DbbzqDIncVlqoRgqjtM/mJyex2/H
8n+prSkBMbnOtpcG89jj0JARsr8EEut01l7RmsehT2tDm++VQO527i0eeR43
jsr+d2BHKXRNmLuMPPuNnPtvLyj/8wEOXZfbMsadQ/+nmuOtdAb0OBmkp3Hm
sMPtycvqUgaEmXrJWXXNIadC//DnagZUq3yULG2cw+9UrnALhwFWTS7ke0Vz
eLOge9BHpgy8tHLaVMPn0HvJslOxYWWQzj0QeV5xDjfbjoQ+cP4Iyxxs+bXW
s+iE3npHoRyORY2xUk7NIheKRZPNyiGk9PY7T5NZJMnD5gX7cvi1IS9kNcxi
89ijB0OB5dDXslzijOosNrgsDOsXl8N7ixL1jp8zmHjQiq21/zNc0Zd34cbM
4Oa4TQH8IxVQv+17s0jNNJ5vvE4X8qmCV5QERd2KaaRbKZrtuV0F95v1Lwcx
plEpeX+6b0IVGIdmLhAF0+iruCNG6l0VVDAvb+p9Mo23jQ6Y9C9UQUkA/2qx
5zSGC9UUl9z/AllfFld6rZ1G7Zs2rv++robbLrLHWs9O4Y2b0RplirVgHDT2
M7x6EsfUP6XvSmgE0oK7Rp3lT5xeV/LedowJ9IuHbnoO8PFi6Y2Lq7+0gOfL
bGmezQRuGzv5SOdVJxx8e9dNqGYMz1btTaEG98I71pzmYAYPtx/V+s/vKwfU
ysTVg2N/4KsnfVaz14YgMNhH2zBvAH+qXx2yUecBb06msiquH1N8/4pdoTEO
WzuTHipH9GPloYiQz7vGgfpB5mJwYD/mbjj7LejAOPSGyJC1XfrxPz1x1x/G
48AWljnwVKcfqWlDn7LcxoEhsT7Xt7UP1+2iin+hjUO8svQjJfk+dEl6o7hE
fgIahRJcgtb2Yc6ptwcuq06A+ICUdsvSPnzcVfSyftsE3MmUaowc70U9DRHd
yIMTELxNasVMWS9Wqt7TaLWdANc9kjfrL/Yiz93sYVrcBBw0WXMpMKsHVeNP
plxawgd/9UKJric9aDmk9uLTcj4UrbArgpgeLDD648D6NXzYVfN82ZK/etBA
btWNLAU+qJnuy75zvAdfvc9p8jzEB60URt+2sm4k9b0/7+TLh+zzy7UnMrrx
9e+cFJ1APmyWt7xdENWN+iZypyi3+CCXOrj5gF03vvvnWnBgNB/E0sTdDae6
0GMohDydxYfB53ZTztu68HynM4fbyQdnKs1QVbILg10VR6Q4fOhSHU/6MduJ
KiLVy3Zz+cDMuHXQq6oTM+6GdZj94sPHF1mhQRc68VVZpgtvJQEpOdMrEpM6
UOdSA/fFfgJkPXTtz4V0oN7++FuUIwQ81Lz/Su5SBxYF1IWeOE7A/Vz5U8+1
O5B5LXEq/yQB/q/1E/Lq25Ftalfw9QIBVm/iFWqF2zHcfKLgZwQBO8Li1oqM
tOFMdP2FfZEEiJ2OFQFmG14N27XePYaAj+MPePS0NqTJpdanJhGwXeNeUTy0
4UEpSxntFwQsn7vzsla1Db0O8xKGswkY+BKRIiLehgr78yKj6QT8eyk87K+O
VsyMtJdNKyRAND3U3M6vFTXkykS6ygno9w7Re+jYiofbn9PmKgn4cOSmTp1B
K1YsPy4n/JUAn67AjUekW9HhEK20rYGAkzkBEn7zLUj8IeZHayJALdCfksdp
wWfCPrvs2QT0yvw1pJzfgkPi/VV32wkoGbrebpfcgqXQo03uIiCx0LfuYWgL
LoZ8LXPqIcDszLWCpeYtKJuTYdfDIWCrytWMI3takBvePT0/QIAQ4ZXsJ9eC
R0/EfRP6QcD7aI+QYV4zilmaWNfyBP4d3K+pMJuxaf9gZNQoAV6aV6j2xc1Y
QdWU2TtOgMn8n7YJac3I3SD94csEAao1bifq7zTjFs6ho3oEAeTHriDq3Ywj
qWPUZz8J6HC7tPOoTTPmP5UneJMEFO2lbvKHZpyhX3mxcYqAuKUu6/NVm3Gn
roLprmkCPNgXVvBWNmOev+Z/WjMEGD93XlCZZOPaczqukrMEbPJxmrDvYOOa
ntCLXQIm6TlyEj6xkbFZxCZqjoD21Q7N9Vls1Em+IKTym4C3PfbVorFs3C01
oPZUwDG5dqVH/dhIk719f1HAV4LP0f0d2ehN4fw4Nk+AgenZ9HwDNj7abrHE
U8BKG20TeJpsFDL8mhgk4Hmu9Z1N0mz08Jpy8xJwyzurwPPzLIy5q65jIOD8
iDOejzgsLL3hVkIWcJS1pXPDVxay7B2L/3++m+rpM8vyWRg+fmVCQcDHJk8Z
6iaz0Lk0aeNtwf3ly80PBISysDbg6exXwftmY09qFriy0N7xu+GkwAfLyUxx
5CQLOddCy0kCpmuZSqruYWHLyF61UYHPe4smSx3kWDgQG6JT+osAap3x7CNh
FpZIBz13F/jXfWI00sBjYl/okl2Lgrz+uGLYs4zJRMPHScnefAIiGl9f5pUw
MaYy2r5PkDdfZ8NU3XMmXmd9id4zRkAFeXRl/A0mgksINWqYAK1L1knXHZlY
1Z716IGgnpJrGCq2Rkwcrve28hkU5Pko7oDcBibudMp7NNgn8PX7dwVJiIly
FSsyfAX1qutMtejnNaEL6aP9QCcB0tv2uWV+aEJKQWKLRwsB+LErYadzE86S
VR5L1Qj6Y4uhkpRJEx5fsik4r4qA+MjXOVO7mjA75/EOrc8EuNqElZcIN+HI
/WDZ2lICVo1u5eu/+IaTm3l24TmC+XE6Lmhr7Dc8s7d7m7Kg3zlFv0XFAr4h
Q9RoOOWZoD5v1cs3nviGug6tu3c+JsBJxtf03Hgj5sltMCwLJ6AmuKvlUGsj
VjkalJiFEqDDMbio8LERM5+OaLwLEMyPXNmA73GN+FPYUVTFi4C8Y4xMzz2N
2BjMRGNrAjZmbdW2UGhEusys1jtzAsIl4lB7WSMq93DTKcYEnG1zYc+0NWD9
P7NRmw4SsMRrhVBYcAMWUN56PZMT+GT5PKBeasDIYYWhfmmBz/1dskbmDXj0
i6/9b3ECsoVf7xBXErBm1KHCBT5k6uR80LpXj+cqVHJNO/hgFKnnaytThw/+
6Oz79IAPCpZZP/cN1mJKQbJRfBgffsmu9pF9U4vGqqtmd/jxIS2z62q7eS3G
P7z5vcmJD7Of/LzsI2qwwTomNVOLDw13e8YOWdWg7g6GRJsyH2inDDzlVGrw
2clFRbY0Hyy6JT268Ssuvspr1/g9AVmzuZedpqpRdX2ltUn5BISUSQ8f/VyN
iQWhcVVvJsAqIuhPpbhqlD/uUb0yYwIo0iZu/ZrVuJtygT0aMQHndgxQXahf
0D7qjiLFeALEXDc6u7EqsS53d6py2Tj0ad7qNUqvxD9iKGPTr8ahaPKHo5p3
JYbTDk9G/zsOF28VOgyLVSK5tKB96Y1xKE2xsHc/VoFRW5SFRbeOC/xG2Hjn
l6PrrU4zScoYHPt3rPlUaDnu1Z5srWKNguwFK+udJ8uRXjj0fDpzFCrGla0I
7ic8FqkeUWk6CvJieNpX6ROam9MsVseMQIPupJlfTBlWXK05VTc/DOU6Oxaz
ncvwLLkow6dmGIrU3HN7dpWhXEPafEryMKSu+S5hyGbgrEhuQ9DuYfDuYzZI
b2Bg/T1xc2sXLqgIuT13NSrFQOWlWtI5QyDG6xFuGC7B4Wi3kgrB/+hnkw11
T1QJpgr56P7cNwSf0w03izQVo4eCZ2J5+SBQ9ba8SLd7j6dV3DS2Mwcg8+/B
7C7PQsxUXKrHauVA9J8OK/XXFGKZxiM71UQO/GXR7J5T8BYvF3TbjJ7hgJFS
pWbgzBsM9H2S1FvfD9wyGl3mVgFq0zkdJqV9oEGmFlgmvEZHHYrTUFAPOC9W
3Xjol4HlZOGyhC3NoKXrpL/6Iw2zLa75SN5mw0LYjGTkchqqSXmu8u9hQdJy
tbywx8/wukccbS6OCQ1S93jXSv9Dd99Gp/qRRgi0Sf74jJKISuIN7pMtVbA/
P11TX8IGo8Up7QUr7sL/AP4p1HM=
"]],
LineBox[CompressedData["
1:eJwB8QMO/CFib1JlAgAAAD4AAAACAAAA4LKjLkYPWD/UfPPG/DKKv3jdbNYL
qHI/6A7+PsNwpL/gQbIBScyEPziOHNcoCre/FPRUl2felT+RpIr90MHIvy5N
JuJ2Z6Y/yMF+kXNy2r9YGj5xjS6nP5aT6+bYcNu/g+dVAKT1pz9N6/2hh3Dc
v9iBhR7Rg6k/2jwhcL9z3r+DtuRaK6CsP+gi3ljFROG/7I/R6W9ssT82B7kc
C3nlv0L5j2Ikpbc/13bVb0BZ7r/2ZQaqRgvCPzDnaFGi8Pi/Iiz3HLk5wj9v
V/4w3D35v0/y548raMI//bH8ElKL+b+ofsl1EMXCPzR55O7wJvq/W5eMQdp+
wz8EkhRq9GD7v8DIEtlt8sQ/YDOKnNzf/b+LKx8IldnHP/tQaEq7gwHAIPE3
ZuOnzT+rXGsotfcGwOg9tf7SHtU/X7FWvbHwEcBX6wrdS0zbP3cbjBhVxBjA
g3pdUK+H4D+WIqNAFF8fwDy/9SiCp+M/wKIv0gVTI8AVMjv0IZLmP1gcCLMl
vCbA+djeiA1u6T+xCSTQGhIqwL+/QpRCiOw/Pt+iOI+rLcCl1FOSRG3vP6xv
14GkgDDAtpSSA0hI8T/eyjGm/UsywCrWUTdUv/I/BCxN9t/1M8CjMcBPBi/0
P7mSrHrOlDXADa2OI9299T+KZ5lWS1Q3wIe/s3AaMvc/ekhLQNHzOMDy8Th5
fMX4PzOxP1cftDrAYz5tZoRR+j8uI9zdjGo8wOQh+Mzywvs/WXn4ID4CPsBV
JePuhVP9P4RB5y8fuz/A1r8kin/J/j+nhvw65apAwC66CoUPHABAgluAb9Nz
QcBpJLOi8eIAQJtkLOV6TULALNoG/YacAUAnjYfmThhDwCgfz6fDnwFA+4RL
C9gbQ8AlZJdSAKMBQAzyuithH0PAHu4nqHmpAUDnx6lfcyZDwBACSVNstgFA
yRUmlJc0Q8D0KYupUdABQCVqhjLfUEPAvXkPVhwEAkAoGstba4lDwLq+1wBZ
BwJAe0dl/POMQ8C2A6CrlQoCQAj7Epl8kEPAsI0wAQ8RAkDZUrXGjZdDwKKh
UawBHgJABdNr86+lQ8CGyZMC5zcCQNXQSJXzwUPAgg5crSM7AkDviIn4e8VD
wH9TJFhgPgJAyi8OWATJQ8B43bSt2UQCQCUT7wsV0EPAavHVWMxRAkCdM2FH
Nt5DwGY2ngMJVQJA03QTjb7hQ8Bje2auRVgCQPf8IM9G5UPAXAX3A79eAkCd
Y1lIV+xDwFhKv677YQJAXv2Jf9/vQ8BVj4dZOGUCQJBUIbNn80PAUtRPBHVo
AkBPQSLj7/ZDwE4ZGK+xawJAh5mPD3j6Q8C2p+Xg
"]]},
Annotation[#, "Charting`Private`Tag$148521#3"]& ],
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2, 2, 2}]],
LineBox[CompressedData["
1:eJwVl3c0143jxT9mifhWGlYoeTKi4VGJlDJKSvIYSSEz65PIlhEhZJWVkT2z
Krv7JiSZ+SCys8ne89fvr3vuOfec++/rxatnqWJATSKRuKhIpP9PJbZD2bmm
1IRknILlHpGLsPCGSL0xNbFiqjr3RuMiApcN348aUBOTaubnND0ugtL6MYtb
h5ooXzto9rrjIu4G38n0V6Umzqkr8i55S8OQ8VWaiRQ1UXu1bLHF/hJcNukS
eVmoCY3Omu6czcuIM8s6KsVETYxW2DxnOyiD8l+qCRoM1ETkTk/P5JMyoC1O
iH9FQ020v3QzFtGXge/Ty+82l6mI54whLut1Mngz7RTT0UdFGJKVbxYnXUF2
/3x4UB4VMUlpZ1CzkUVgIF+jRTYV8bVcQV/2jSyspP+ju5FJRcgJCw0bFchC
PPrTY/pkKiKm3zZOfk0WpRr21x0jqAgxyqk6B3c51DZureu7UhFn2yj+K2/l
MVjG8ODcTSoi84OUd+7GNVSbSbzer0hFiKeVh6XzXUcKh+n3OXkqQrg3qaH/
xnU8sq87m3WZitDXaz7LFHMds2Kv/nfkXyqCPMbwWeuKIrYyWCsYOf/+V6vU
S0XeAFsk97HeMRJxyyL314zjLdRFaQfMDpMI92DdGKm0W3CNjlqmGSQRtNmX
ztS13cJo3MHa4z0kwir6kqAGmzI+pbBYWv0gEZ887/s3PlWGysftQroSEtG1
vb9H/Nxt+Db13hD2IxHbTAksd9pUcPEH16eLPiTiH94jEvazKpht0eK+7UUi
ik8X9VYz3YFGe/usjSuJULok7NFx5Q74exrfwJpEDJikBQzk30HFBPpUtEnE
neLU6YIoVazTx1nbi5AIu3cbC0f91OCQzhocKUQiHNyek5gy1bCm5JNdcpxE
/CehEsRbp4aVUKvxzSMkQn1sRL6NSR1LR2R13A+SCMnuvMvmgeqYuziu+JJE
ItrM3xr5xWmA8sdYTiJpG4Xj3U2Ow3fRIqbi5hS7jd6hobORTFr44Xih9HPE
NkQW7+6aPq2FJgbm01cCttHp0C4g5aqFumP5XDdst5GZX774hOseKrU3F7Sv
baOySPpmsJ428uuDEtz+bOF0tee9aSYdnA71V5Qf2ULU7aeUxGM6yLvrM8/U
vwWJw5rhrhd1kDPieiWcsoXwEMe5DLIOMqnIv9+XbOGug4LvzzYdJP9782iX
zxYedzkrI10XkdG7EsT5t5B24EnRC6uHYNOnV9zg3sI075aOW+BDhAtSz5ez
bcEw+ePztPcPEVawKqO0ewuxhy7oeU08RGjz6MDDhU00HFe3dzDShz/d1yNB
FZvgI+3P8Tc2gKu5R/zE/U1cSREM8QwyQkJHRA6H5iZSqgXfWecboVo257Pi
nU1ECag3hrYagelwd2eG/CZeBZekmbAbI7xBfJ/ZyU20cB2VNE82RrbouMck
1SamXZ7f56wxQc+sssGfxA186xtX+VfMDFT3jZ5wxW5gqjo+vfOeGfhqnd2U
IjawxlbWW+xphkfx6dFZ/hs40HX+3ImfZlhSoW0zf7qBQorjod/PzMH8oUBu
Sn4DdTG5I32dFpB6evj49Pg6IntMeFr7yOjTlU+IH1yHeU1X3Ll1Mp4rkQ+r
9axD7GVJUNX+x6jlq2Ata17HfvKPb/cUH0OtxYDqZeE6FBpf1L8ofAzyyaxO
fq910Cyu3GCMskLC+AX/+7zr4Jf/0FPgbg25Nv2deznW0XDrUH1jvDXGy/09
qljXcabAi4/9izVORvTaC+9cB4WX5YY8rQ1K5T0M16bWwCrBqMDkY4O2xFrp
N6VrEOHLHvV++xQMDzTn6tXXoHp8Ni3ljx2uBky3xtxeQ95BuQer++zhWuZZ
ZKm4hpzEnBNeEvZY4shz3SO9Bk5zbg8Vb3sM/NzF8h//GrwelAoT/A4oVikV
6lpYBXuvsbiMpSPM5LgNxoNWUd+umfb6lAtSbD4qlLxchcOPB8r0Oi4YSFQU
9vNcRXLYnvDPAS7QoLGbP2G/CqfBg5U7/rhAlmhye6yzCpdHNg07s57hsIR7
zIrIKjbLb8+HRrui8cRQO33dCj5fMPQOu+aO99RveGWqVzDOysPd9tAdfu1y
ps7ECvRsymwkXNxx3S11a/7DCtLUGSVt8t1RTTE91h+9Ama/CdEibg+UOs5Z
lViuwEStsDlj2wPp37Z3k/etwMto/Htrjyd8YnLUM3avYD4jNO3ClieMn+i+
G96xgvTrOtkNXF7g5/oipr2xjEtyl846a3vhHdlL6/rQMtieNRrR9Hoh/ODu
NL6CZdyoVqaaHn8BTwP2qx13lyGysDwmfNwXg0Xda2Gqy2CpPOYwruyLq8zv
ctVuLiNQqDZkxN4X1AX/cFMuL2PgyPfpd3W+cNn571rD8WWohn6QOWLzEk8z
buVULi3Bd2bmYMYPPxjPPufMCV6CYub+/9VXvMJXWYUWC78lLP18HSW/8Ar8
kYy+J7yWQFEYSdyxLxCDMsHL6fZLKKC4LV+RDYROaOyPJJ0lrDSWUV5nBELz
bLF3lMgSHtuz/qI8C8J15+kFr9pFVDJHZL1QCIGSbf2enMpF2NhxiQbrh0D5
cYZIx+dFFIzq2VW5hkDNwMhYKP9v91i/mVIUAl2l3l+NUYuw9Y4Nv38iFHZc
jRWHzBex99E8ZzPnaySVvQ9MZ1lEVe1BzedcYUgt8MtqYVjEkT42Zl7pMKTn
PqrdoFlEJ0/82ymdMOQk8dPeWllAepWVLldSGEr9Y2zn+xZwriTyfrNoOH5o
B9yXzFtA8F1p7pabESBtmQs3qC6gUMzY7s7HKERdKMplvbWAt6rNfU1dURC3
pz2rdW0B9JuGz7xo38J0IfLyqNQCyERPdJTqW7SNf1Wj/mcB7pJjok+X3yKz
nddNfHUeMnZc0WIKMdDIbW2NiZ6HIoPJyYN+cZif4tEaCpuH2Q+H8vSEOAQI
m/UJBc+D0eHLzwclcfiSQj1R6DUPyxMJ6qITcRCJESW1WM7D1q6MYnzjHWhf
+gjukJmHiKFpJHl/PHL0pZ5ZDs+hlSeF4dyXBHznjXp8vm8OHAfd4r/0J2C4
Z+UhTeccaDwCbrqQEsGp+UEhrH4OBzifkdwvJsJbSWgvPsxBIflQVW1pInTE
2ZKYPeagF868I6EiCf/buVibxT2HVYHZ8FeLKRCqUimzZZsD5cg+zyD2VMi5
52Rf3jeHqXMPdOqkU+G0YRraSj+HgfNl0lO+qRidGdDe/DMLZ9ZxycmjaSA6
mmZulM5C/9H9Mm7ddFhmZB6Y1JjF9SnJq4u7siDCfMyS584srM9O3agSy8Ik
OfqrqtIs9m5tizffz8Ij8QC7ssuzaNIwoY7Jz4J+uWVngOAslNf+tLLqvMfd
9tMxpzZmsM+VZv5LZTbkaIqO2cbO4FS/e/KPB7mgMzzlkhExg5jbencb7XJR
WZPW1hsyg7DLlsR0UC4uB0S+UPCeAX21qNnbylxIsjmNsT2e+cuJR5vThfJw
WlQ6q1RmBiW29sLfSPmQ/ORrQls3jTyyUZVnzQcUO8QtPME0aByK5wZGP+Cc
9Kdnv/OmIfHAkd2K4SPEavpfV0RMw0Q31/sfxY8Q7jxX4Wo0jfPeB68uN30E
x9Yw+yb1370X5ZvF8CesyV6pWzw/ha5PlzzXJIpgt0tT3eDEFD7UrJud1ivC
UoPFAIVnCnUWLKnJPkWYU49cyd8xhbxYRw/ZjiKMm8zyWbX+QddJ705Dx2J0
+sc6T5H/oGF7ltX3ewmKWtdFRlIm4R3Fe2A7+jMMeSd9g6ImMXfGWf1t3Wew
mncNX3g1iZxz35OerX8GmbYsJvDpJE66/UPDfhc4fsaFWUJ2EhF8wb6quwm8
CSRN+Q1MoLr8yotqCgErRbqs01wTSLTwEyxwrQBP2OLO7v9NoF2v8mLj2wo0
DAzpv6CdwDFTR6U9RRUQcKjm7JoYRxPfYSXWuQr0pb7w8ywexzBlpy+n4Rfc
pN9l9lN9HFPGDdlmapUQLGcWcgkew9XrOz7+0KwGt4bYnU2vMQjWeH+6Z18N
1mlNRyfHMdwO6NPaG1GNbc6k7w76Y5j/b9aeqqMaFLsLZrbiY2Ck0DxavPsV
LieNs8ido+BXYxU3NqpBS2y56MMjo9A7onZRILEWNeIj6gMHRvHCdYda9Lda
fK5nctVlHAVx/13n1elapK6rNz1YGIF13r2zohe+w0V9inyvegSXSLlpdq3f
cZyFI++/RyPw8GH9zs5aDycXazGFvGE4GGfeelXSCCtWiDckDUMgV7C5bKIR
xukM51UjhiFsn1zAxtyEO20xUjquwyhtsq5eu9gEQZFvcnY3h2FyhuAgxzfh
ZzeXZur4EJy/b+1RJTdDTOqr886jQ3+5w4XtsUALBFv2uAYcGIL1dozOfbkW
8Jjcc2fdNQTDf+l/2jxsAePrWS+e2UGUTClK8sW0YGCSI/AcBmGseE3Acz8F
gW/J8cZag/j40rDHl6kVk+tsX2tCfiN1j6KVElc7BLojXh/1/o0zLkblCVLt
MPzMpu/i9BsOczzWx+63o9+VjUrM4DeebnB0ZMS2o42O7UKs+G9kTMs61/L9
BMFyKNumYwAnUrYKXM52IPTogbAj3APwC9Duueb6C820bwyc9w1AWczLxjb5
F5iH94v93DEAr6nbdu11v+CTur/Zf6Yf42uG2aLsXXA5sZ9xtbwfr92mreUL
umB8lvVZo34/ivyKg6+td0NSca+RU3ofRBg9hfjV+uAgVMDSE92HZ1uD7m4W
fShkvFcoHdSHKoGbe7a9+nCmLomBxq4P/CXajrqFfRBUOp/pI9uHx5UDfDWc
/TgZQwycKO/FTaxdkpnsx0jSvWW9Ez2I9a89wJnyG3qGyQr8rD14cdhQam/l
b/Twz0SMrXXDh72H42T/b1BSPCTJNd1I1Bop/M0xiIq0dDfnh91IDYr2FA0Z
REzWCmN4RBc2NPm03X2GoPYxlKee7hfE8mfs9N6M4NTzkH30fzoBOr6JXYUj
YLoTTC9N6QSTZpJxb8cIKmZeTebEd6Krlfny7sOjEBV+WRgq3QnLgkA/t9RR
7ExwU75n34EoHfq1xaoxFAdauE5MtuO/gO4H2nyTeP3A/AkfpR1OlbZOvxUn
QRYxM9QuaQe376+EqCeT4K8zudHo04651Zm2+C+TCNlhcCifvx1sEneF9xr+
gZmLVo6DThvmlhoTYz9MgctMoY+BQoE+ncDESOkMvJtzTSdLKXgqqSFk8WMG
c+Icyw1JFMQeZepnGp1BNdXU7lBbCj52hG6G7JuFRVjIhcMcFMRsLot8N50F
KnrenNZrgfWjZ0zTPHPQZbNR0pppBrfB4cXwmHnUufT8lOpoBl/0kyrVgnmI
D8rr81Q0I6BhwVeoaR67stkdh0KasRVx8aog9QLyrhKplmebQZ6pem1htAAa
MiPtc5cmOFm/qT16dhHX/K/YaLI14B8ps3tfJ5bAo5q+cH6kHnvaTfNMdi1j
iX2PNfvHevSkpr8UEVhGfGqP1S/lekg6jR3jMVrG2hd7srZ3HfbrGrxIGlxG
+lq2qe5yLd69HxJWGl4BkzGnnknrVxzYWbaSSbuOJpnFm/ZB5aikLf73ct5f
DxQ/tZ2pV45dL5X1X7T/9UxB8+y+M+XIMGfnmNnYRtzeIRaFNgJPJKUyWPlI
xOMBStMBDgLbdYLnD5NJBB+tSZLxtTI86DA/ZsdIRaS6j2T2WBbAsUv5AvkW
NaG3XWP72j4FznaeRu676YiTMrpyeyqSMSl40EiYj47Yer7K6r8rGQI1rJyj
EnRExC7BvOdRiWD1PZwdakxHNO1/Ofmk7B146PfkV1TSEU4akRWJ1OGQoa+o
fOJKT/DlJ4jIsWjgeMM7rbzNHcT/ARKb3NY=
"]],
LineBox[CompressedData["
1:eJwB8QIO/SFib1JlAgAAAC4AAAACAAAA9rKjLkYPWD+4w0MN8TEIwPZlBqpG
C8I/JnIbIiCgEcAg8Tdm46fNP9cKmh+55RXA6D21/tIe1T/ob446XQwbwFfr
Ct1LTNs/l1RKETJFIMCDel1Qr4fgP4lMIK8Y/CLAPL/1KIKn4z90k2ZkGw4m
wBUyO/QhkuY/kqIkO2gCKcD52N6IDW7pP8mbwX8s9yvAv79ClEKI7D+wDnYp
rDgvwKXUU5JEbe8/KBJwZEYlMcC2lJIDSEjxPwAeCglc0jLAKtZRN1S/8j8f
O5dzEWU0wKMxwE8GL/Q/OCGKGTbxNcANrY4j3b31Pw6m8LXwnzfAh7+zcBoy
9z8QAUx4nTI5wPLxOHl8xfg/VHC/TXvnOsBjPm1mhFH6P7FPL9+7lDzA5CH4
zPLC+z+/0w8hXiU+wFUl4+6FU/0/4WJ6M+/XP8DWvySKf8n+P8P106TftkDA
LroKhQ8cAEDgkFoN031BwGkks6Lx4gBA79qSibNVQsAs2gb9hpwBQI5jAKMo
H0PAKB/Pp8OfAUCWfYA2rCJDwCVkl1IAowFAvsc4yi8mQ8Ae7ieoeakBQKmE
UPI2LUPAEAJJU2y2AUBi6hJFRTtDwPQpi6lR0AFAYn+X9GFXQ8C9eQ9WHAQC
QGRxXHmbj0PAur7XAFkHAkAXhT4TH5NDwLYDoKuVCgJAQ45OraKWQ8CwjTAB
DxECQPpa9+GpnUPAoqFRrAEeAkAo7WNNuKtDwIbJkwLnNwJAAelqLNXHQ8CC
DlytIzsCQDzOCslYy0PAf1MkWGA+AkC5RNRl3M5DwHjdtK3ZRAJAltvin+PV
Q8Bq8dVYzFECQPaC5xXy40PAZjaeAwlVAkBiwcyzdedDwGN7Zq5FWAJABYjZ
UfnqQ8BcBfcDv14CQCOxaI4A8kPAWEq/rvthAkAyluoshPVDwFWPh1k4ZQJA
pAiTywf5Q8BS1E8EdWgCQLzKYWqL/EPAThkYr7FrAkAin1YJDwBEwMdEUQY=
"]]}, Annotation[#, "Charting`Private`Tag$148521#4"]& ],
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{12, 2}]],
LineBox[CompressedData["
1:eJwVjXk41HkAh38zpSQRtaJCo7Ke2KGDekrb6YjYcm20WymjKdWoR4rKUjoU
hS7HUytDhxyTNOXq8w0hzQxpxJRrIuXKQ4YxY8a2f3ye94/3ed4PYy/Hg0Wn
KOqvn/ufbkaGeU+C6ETPuCF//gI+jlwCU8imk5IsP30dGz7iRwNzv7HoJF5z
TrvWej7EDc9yTPfQyc6dOV3me/jwS/TMjvOiE/pQc3R3Gh+B0689OrCWTnw+
+NunLXqOCJVGBkOXTsIYVJSO7QvkSX8kJeTTSHJQrovkVBHi4xfVHsmjkZMV
uuPR8UU4ts5bY2s2jay/1s9fn1kEuzv8o1Pu04jWdY/wb6IilOwIczmV/NPP
WJ6oMCtGTa1aGRBJI7ohnvLlomJ0lk7bvcqdRpxW55p4Ly2FUYrp4rZuiize
axV+14BAkPr31cEuiiQHr//qaUYQeSd1dFInReIZQ2/0mATf0ubUWLRSZNLm
LZoPHAj4D3Q5x+op0iAJ0l91nMDj2cQLjWKK6E0JfT7WQHC5rm2rVSxFXms7
j5vffQXllLSQMCZF3PL2pN10KUd41uzEFEuK+LXpMLx2lEPhFpNXbEGRnSvz
feYHlkN+41iPyowi9cuEyjdR5Rgxc9hzdg5F7N7Re1MKyzH0e4/rFYoiSzYI
fI0sKyDuZzuuzpxAyT0z98JfXuOpMIEb1a/GTP+chnnTq7DsRpyr01c1aqxD
ijvmVyHfL+aHtlSNshhD20JmFXhfIzclidWY152sHedRhWxacEdusRrV+aEH
JSlVuG/rvrA5Ro3YrN3dM5jVSLmjxbUzV6Mg+McL691vEHn4XHrvLhXqLwbK
S7+/BVeSzJvnqwJbbpNWSxeg0oH30tVTBfXapugBAwG0TVo+PnZSwXScYeW3
ToAkkd2sQzYqVLMEU5vjBciz7jnXR1OhR8s0P8VOiNbBbaz+jHEw1CkM1zgR
1oaaWAz0KMF/+iG2s6AO7f5O3PROJWb37GtrfVWHaLdgE59WJWyv95t2iOpQ
s6hsduk7JS71cy5N666Dz3sW7coLJSomcytFxu8QbJPz0fyCEjk19tEbYt6B
27MmbhdDidpDAeGq/fWYttt3SPinAt4J0zNjHcXYfHWg4e52BcZv72KPeIsR
WXq+kOOqQLp+VHYQS4yRefmReusUWKFyajoZLcbnJi1db3MFpNrJ903KxSjy
KLFsHh4D8/qy0H83NuCQoymrJ2EMs7avef3E5QNqf/vSOEUgR6hQTZ8e1YRc
+i3Gxko5JvMu9fomNiG20THoDJGDZMuqC7hNcIl6qP5RIMfSsqlnr1Y2oVIc
tFh6R47eJEVNvbYEJaeGjhVzfvaSNJ5npkqQ9WZiRvAsOTjj1t05ZR9xnjV3
s8RvFBF2uStNV7Wgs7BFcdtrFMdtOGNs9xZs1rn3xMd9FAHZR7aUB7SA/vxX
U/GGUcRwCsoeJbQgQtNWIbIYxbIDJf7r+loQ+vgPXsXICL4sPJVxO6MV7MHo
+bzEEYQfLLGw0GuHy5mB4Qs1MqQnZDx0y5LC7YRQj1chg9Crz6qOL8W2o4+Z
kpcyjNqxHXaWS+HD2s+2fCqDcdGY85VmKfzd2j7Vpsqw5K2hrafuZ5w0ri0z
PCxDVlTVPxdDPyOzNDc+S1eGDaejjj5y7QClPmwl8hpGfaNmoJH+F/AC1v7D
6RqC8+XhuWcmd4PzONugb8cgFg0OlMQafoc9//KByYIBrFo5kdopGURhg5L5
9UEfwm8t72AG//x9pWMZkdiNyiddSQbJYzgdEbLCOb8LXFvqZugCNfqURlXV
1zuwb43E0L6XRuxd9fefzmqH3bjwfSClQXye3Vgg1PgE68DPi4cbNYnxIef2
aWIxrPL2hUmWzCBb4jYd9zUSgSd1q3NomUnqNsrcwxJewWVpPbuRO4vsnag+
cTPsAZKP+AdxLxiQkLnpTEfdHXBZ0NqnpWlI/gNBcTZK
"]],
LineBox[CompressedData["
1:eJwB8QIO/SFib1JlAgAAAC4AAAACAAAApkulLkYPWD8SG69FKiIYwPZlBqpG
C8I/qdE07QFTHcAg8Tdm46fNP2G7ZJgzhyDA6D21/tIe1T+RxlmVB7QiwFfr
Ct1LTNs/Gw+lEz78JMCDel1Qr4fgP/8TuwJ7PCfAPL/1KIKn4z8e8nI918wp
wBUyO/QhkuY/rT0T/WhMLMD52N6IDW7pP6u/1zYE1i7Av79ClEKI7D9Qzxqa
udYwwKXUU5JEbe8/ms/CumYzMsC2lJIDSEjxP7i0qwE7tjPAKtZRN1S/8j9l
83LdoSY1wKMxwE8GL/Q/EpjNnJyVNsANrY4j3b31P/YHbR87KTjAh7+zcBoy
9z8WpWmbYKY5wPLxOHl8xfg/BrHTEYFHO8BjPm1mhFH6P2B053aD5DzA5CH4
zPLC+z8o4X0vZWg+wFUl4+6FU/0/wIqLbq4HQMDWvySKf8n+P3RTd9MPzkDA
LroKhQ8cAEBxCea9R5FBwGkks6Lx4gBA93QHAsZlQsAs2gb9hpwBQHgoUX6Z
LEPAKB/Pp8OfAUDCGMtXEjBDwCVkl1IAowFAFivxOYszQ8Ae7ieoeakBQGxg
Jhh9OkPAEAJJU2y2AUBa3XY7YUhDwPQpi6lR0AFAI6nPFytkQ8C9eQ9WHAQC
QNfTaPnEm0PAur7XAFkHAkD85YrbPp9DwLYDoKuVCgJA4iuIxbiiQ8CwjTAB
DxECQDeB+7CsqUPAoqFRrAEeAkB8oRjllLdDwIbJkwLnNwJAtMLWvGbTQ8CC
DlytIzsCQPtRzRnh1kPAf1MkWGA+AkDb8j1+W9pDwHjdtK3ZRAJA8MN1XVDh
Q8Bq8dVYzFECQA0dm3Q670PAZjaeAwlVAkB4kr0MtfJDwGN7Zq5FWAJA8kQr
rC/2Q8BcBfcDv14CQKhM0QAl/UPAWEq/rvthAkDaIv61nwBEwFWPh1k4ZQJA
BDhfchoERMBS1E8EdWgCQL3X7jWVB0TAThkYr7FrAkANUqcAEAtEwBF7UoE=
"]]},
Annotation[#,
"Charting`Private`Tag$148521#5"]& ], {}}, {{}, {}, {}, {}, {}, {}, \
{}}}, {}, {}}, {Ticks -> {
Charting`ScaledTicks[{Log, Exp}], Automatic},
GridLines -> {None, None}, FrameTicks -> {{Automatic, Automatic}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}}, DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None}, DisplayFunction ->
Identity, DisplayFunction -> Identity, Ticks -> {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , Automatic},
AxesOrigin -> {-2.3025850929940455`, 0}, FrameTicks -> {{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}}, GridLines -> {None, None},
DisplayFunction -> Identity, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"ClippingRange" -> {{{-2.3025849990109806`,
2.302584999010981}, {-40.086425859164684`,
14.02286717861406}}, {{-2.3025849990109806`,
2.302584999010981}, {-40.086425859164684`, 14.02286717861406}}}},
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {
FormBox["\"\[Omega]\"", TraditionalForm],
FormBox["\"|A|(dB)\"", TraditionalForm]}, AxesOrigin -> {0, 0},
AxesStyle -> GrayLevel[0], BaseStyle -> GrayLevel[0],
CoordinatesToolOptions -> {"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )}, DisplayFunction :> Identity,
Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> GrayLevel[0],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
FrameTicksStyle -> GrayLevel[0], GridLines -> {None, None},
GridLinesStyle -> Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]], LabelStyle -> {FontFamily -> "Helvetica",
GrayLevel[0]},
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange ->
NCache[{{-2.3025850929940455`,
Log[10]}, {-40.086425859164684`,
14.02286717861406}}, {{-2.3025850929940455`,
2.302585092994046}, {-40.086425859164684`, 14.02286717861406}}],
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}, TicksStyle ->
GrayLevel[0]}],FormBox[
FormBox[
TemplateBox[{
"\"Q=5\"", "\"Q=2\"", "\"Q=1\"", "\"Q=0.707\"", "\"Q=0.5\""},
"LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{}]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{}]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2}]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2}]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{2, 2}]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{2, 2}]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2, 2, 2}]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2, 2, 2}]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{12, 2}]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{12, 2}]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #5}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Helvetica",
GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic,
StripOnInput -> False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]], "GrayLevel[0]"],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",