-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch4-全差分放大CMRR.nb
597 lines (588 loc) · 30 KB
/
ch4-全差分放大CMRR.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 30550, 589]
NotebookOptionsPosition[ 30006, 571]
NotebookOutlinePosition[ 30368, 587]
CellTagsIndexPosition[ 30325, 584]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztnQm8VPP//78/e5ayJXtE9iVZQ0j2pSgRUUglKpUl0UbWFm1fJCWlJJVS
abEmaUVSJLtCtuxbts/f8+3/me+5c2fmzr3dO2fOPa/n43G63Zm5M585c+bz
+nze6+6XX9Og5Xr/+c9/rt3kn38aXNapTseOl3VuuOU/vzRqd23rVu1aXHF6
u+tatGrR8ajL1//nxpr/95//PPbPscE//3dCCCGEEEIIIYQQQgghhBBCCCGE
EEKEwNtvv+2mTJninnnmGTd58mQ3btw4O6ZPn+7efPNN9+eff4Y9xHLPTz/9
5GbMmOFmzpxpPydMmODGjx9vP+fOneu+/vrrsIcohBA55+mnn3a77rqrI8Sy
du3a7rbbbnNdu3Z1DRs2dPvss4+7/vrrbf4UZcd3333nLrvsMvsMKlas6K69
9lp3yy23uDZt2rjDDjvMHXfcce6ll14Ke5hCCJFT/v77b3fFFVfY3Dhx4sTE
7X/88Yfr0KGD3d6nT58QRxgPPvzwQzvX55xzjvv111/tNj6bhQsXuu23397t
vffe7vvvvw95lEIIkTvQIebEjTfZ2L33/nsF7ps2bZrNmeylmCtF2cC5feGF
F+xcs3cN8uOPP7p69eq59dZbz7322mshjVAIIXLPxx9/7A4++GCz5SXz+OOP
25x58cUXhzCy+IA+9e7d2/3f//2fG/v42AL3ffvtt+7EE080fXrvvffSPIMQ
QpQ/XnzxRbfJJpu4Fi1aFLidObNp06Y2Zz4y6pGQRlc8GHP//v3d/vvv7w44
4ABXq1YtV7duXVenTh07LrroIosFybeYj7/++sudccYZbocddnCvvPJK4nbe
z4IFC9z6669vGuXtfkIIEQfuve/eQr6nzz//3OIktt12W3dj5xvzbj7PxFdf
feVOOOEEe0/EwP322292vPXWW65JkyZ2e7du3UwT8oUffvjBbbnllqZBflxr
1641bapRo4bFSCx+fXHIoxRCiNzBXHj11VfbnH3aaae55s2bmy3vpJNOsniy
J554Iq/m8WxAi/CX8Z5WrlpZ4L53333Xbb311ra3+uyzz0IaYWHmz5/vNtts
M7fTTjvZeedzwCd41llnuZ49e7qPPvoo7CEKIUROwfeOLWzfffc1//yiRYvc
hRdeaHM7OVBF8cUXX9ic/8EHH7g1a9aYNoQNulOzZk2Lmf/9j98L3Ucs3F57
7eXef//9kEZYmL59+7oNNtjAde/e3T6DRx55xG2xxRbu1FNPjdTeVQghSosV
K1aYFl1++eWJ+Dzm7QoVKpitKV08M/mid9xxh7vgggtc48aNLT9nzz33dCNG
jMjl8FNCPutGG21kY0uOOSSHCF/bmWeemRdaCuxPzzvvPBtz0Pd0zTXX2GdD
DGXy+yAfbdSoUW7MmDFu2LBhbsiQIXYMHz7cTZo0Sfm8QojI8+ijj9ocyPo9
CLk2VapUca+++mqhv2HuO//8893JJ59sPh3A50MMIM8XNsMfHm7vacCAAQVu
/+WXX0xL0QHqNOQL7EGPPPJI8/Xhh/IMe2iYvQ9y0JL1iX1vs2bN7P4rr7zS
9evXz46zzz7b7bjjjorzE0JEnlatWpnfgxoSQS655BKb+6ivkwz1JNhfJc+B
aFQ+xJd5f9rgwYOtPhMHMXv169d3xxxzjHvyySfDHmIBiIFAmxhfUIewt2Lj
O/zww1P6ANk74UvDvuohlxf/YdR8hkIIEQS/Bn6Y3XbbzebwIPfe+29M3513
3lngdvZLzJndunfL5VCzhlxjfGnM98RIEE+O7Yy9HXM5NQXzDWxynGviIIL6
REwE74WY8y+//LLQ31HzA71lP4seYdfEByiEEFHnyclPug033NDmctbqQZjr
mDMPPPDAAnFu9913n/lvyJnKR1auXGl5rOQSBeMKVq1a5U4//XSzfc2ZMyfE
ERYEbaE2BOe6devWbu3vaxP3obV1T6pr9w0aNKiAdvF/8qnZK/E+Fy9ebD7A
ZcuWhfE2hBCi1MCvRE7NHnvs4apXr27+j08++SRxP7Y68lmrVavmGjVqZPM+
sB855JBDEo9lDsW+hK1v+fLl5hcJE/KdmM+JLUj22Tw29jG7r0uXLiGNrjDY
ItnD8jkQ8568X+3Xv5/dxzph5MiRidv5PNjHEpPC57Rn9T3NH0idWSGEiCPH
H3+8xb4RawDoEf555n3shGhUmOAbY//0wAMPFLrvwaEP2jg7deoUwshKF+pO
ESfv97G8X3yGqpEohIgr2JDIG/399//lFWFbIsaCeIQwYS9HPaNKlSoVsuEx
bzdo0MD0idyiqIMtkL2TjyOn3scbb7wR8qiEECI88OHjs6emLOD76Ny5s+XC
vvPOO6GOjbwt9hTYyYK5Tezx8N9QR5CcqKj3qKDu0aGHHuqOPfbYsIcihBB5
A34n/PnExt11111Wo++oo46yuZL9S1h8+umniZh4NOruu++28d1+++2WJ4R/
jX5/UY9vQ3d5X7zPnXfeuVBcixAiWixdutTqgmKXIseE3FK//gdi1bid+5l7
qaVATwORGnJIySeiVsRzzz1n8RFh25aIvyZXixq3xEgwNg5qLJDbRfxeeYC9
0/PPP291Eak/pX5QIl9gDgjOs9gqfFwVvPzyy5pnU0AtGGxQrDl93mbQf8L9
5KlyHzFR9N9RzTMhhMge5tEbb7wxMc9Sbyt5nm3ZsqXdV7FiRVtfaZ79F3Sc
80JMdapcR84lPXb4KYQQovhgl2KepeZJqhqQ7A2YZ4cOHRrC6PIXfOI+3xRf
RRB0nTrR5G+qLowQQpQM7HXoD/VaVq9eXeA+5ln69lAjUvumgvz8889ul112
MZ/yhx9+WOC+h0c8bLVvlixZEs7ghBCiHECsLHMsc23Qxw9Dhw1122yzjXtj
6RvK00uCuCdse5y3YK83akdTJ6Zr164hji63oNU+9i5THwb0ukePHkXWhCAG
4aGHHirtYZZLZsyYYbXiM30/qV9LjQsem+5x7POpNTFr1qyyGqoQxYb60L73
WjA2gvw8eiIwn8hGVRivT5y3oD7dfPPNli+TrPXlGerpkQuEvTPdnhHdpu4O
j6FfYbp5Eh+n9+vl05qI78A333xjdlv6WBH/ftNNN9l9YY2T2uL0cGevHvQb
J0N8Kee0RYsWacd6ww032GdILD3xqULg26FecN26de16f/OtN4v+o1LG61PV
qlUL6BM1W2rUqFHgNvE/sHfS+4daqL5vKrG57KfoUxAnyAXyMTa77757yjlw
8uTJCQ2j53g6/fa1jXz97XyAPCxiV/34/UF/Wno/ZdMXuCwgJ8uPKV0tImpb
BMfNXir5cdj4yc/1j6HWfD6tDURuYd3Dmodaz8HrnYO1WS5z/phnqddZuXJl
66kN9NzE5kdNLl2nqeG8+NhGv2dAr1hf/+3ic87IV9p8881tz0gtIOZC8oWS
Yf0TvM6pp5N8bXHdBedSni/ZJxoG5Acla1Pw2G677XL+PWGOwG/sx0BtouSc
MeyuvpZ506ZN7Sd7KXKegvTq1avA+6OePL5nEU+OPvrojNd7LtcvvA59X3hd
37OH/jZnnXVW2pgI7Fn333+/u+6661zv3r2tp3fcCOoT523GzBm2d0iVV8r8
Ri1o6iKwDi+Nmty8PvNPmAe0bdvWzgHXED4O/k9duuD1S992bqdHBXvMrbba
yjQtuaYdtfh4HPMlvXb5f7DPYa7fMzVrqd+NrTHdd9Uf5MPlanx8L8lb5HWp
X0v991Q9M6itS21b37+E/R6PC+5d2fuzn+X22bNnmw0wef3A64V9reko+wOI
08YmkOlax0b09oq3bZ2zrq/JOiiTbTqoT9Q7mzJ1ivVAoO9LKo0kp55YdOx/
Tz31lH0vibHGr5pOU3n9fOiDWtr4eZeaMNhnqXeTCnwXrFuxBU6bPq1UXpv4
dnJ/N954Y5t/wjpYZ2EL8GtyfJacEx/fQG0IbALcxloGiLvn91tvvTXxfl5/
/XV7L8TjMK/OmzfPnpvarMHa5uTh5fo9F6VNHOxlcj0mfk6dOtV6l6BD3Bbs
fev9fdS9gIEDB9o5Rc/8d5VehtyGjZ/bsE3zOzE+vk+X3z+GeZ3pyM3h1zBF
HaX1HeS5Gp3fKOOaHTu/Xz+xxicOK1VMBPE/zBe9evdK3M81zbqXPWG6/RYx
FjxvJp2MIvfcc4+dN+pr8P5S5el60K/kHnfrAvqUyj4cxoHu+vmuT58+dht2
Thg9erTNbax5/GPefvvthP3AnzN6bPA7fnogDpDeG9xGD0MYMGBARrtD3A5s
d5xTvlfEnHCb7/VBXSY0c7/99kvU2WXNyR6fecH3/WVtwd/NnDkz8fmccMIJ
dptfP2Ab1HnXUVYH9olM9cK8/ZlaRsRrpJpnWQczxx5xxBEFajkD62F6RhPz
lwrsPsRalDd96t+/v51f1hLUL0sH61v8e6XZJwidW7BggZs/f36oB/sc/EYe
4vT8ugjflF/DJ/dBxzbM7ZdeeqmbNGmSXX/0zQteQ1yXPIZrEti38/u1115r
dtSyfm+cX+xi2CMzfb+4P9fnnRqPQbu6P4d8D4G+j4ztqquuKmDXoD8ut3fs
2NFiTfk/ftPgd5O9LNrGNYttAFssj6OfIX0ow77mdJTNQdwm/S2LWouwV6dm
G9/7dX1NaugVVcsSu4u3U7PuSmWnw5bH3g97QPL9vs91Jn3CflDe9OmJiU/Y
58X6MhPYPpk3iGHzEBPG/Ddt2jTblyYf3M79yb7sKOD3TN5WQP+M5Lwo9Irr
DTtSmzZt7HHULEy+tmrXrm33+b0isa65jkUg/sX7aFId7P3yIY4IOz3n3Z8r
+jsm20H4nXgOP3Z0aNiwYQXGz9rH+wL9Z0jd9nx4j6LsadeuXVqNoi/bxEmp
NaKsGDt2rI3nsssuS5vr5OuhJmsdeylsW9Sf8LYrfMp+3n3ppZfM9sDaGFs5
tzE3YXOI+vVO3QhsID7uMR3kPQbjI4FcGvYFmdYpxG0n106KAsTPeJ89h/d/
JHPuuecWWJNxTpJhze59K/wMK3aftR65QcmfEXFE2BbyAfar+Of82MiZTvUd
69atW2L+4XNK9Z3H1u8fgz9cdc3jBfvuZI1i3UP8Qa7nbWJ4mGeT6/R4WMPT
n4drObl+OXtCYofZF/rrnPj5YOxrqgONjkveL/FsxF8HQcvRaPbIfPeTD+wo
2G/C7IG0LrRv394+59NOOy1tbAx6jT+Tx+G7TwV/69f77NHD3IOju8TIMRZ0
gP0tttt8wucxEYOVLncR/5//fvIe0uHjpvCvRn0tKYoHay7ikvfff3+7Btp3
aO/eeTfcfqHpYI7AhoF/ysdSefBZM378EP4aJm6Q+ZV5ljmYmFXiuvgu+Pk3
ivuCksB+E9+b9/vHCXwd+JAyQZw08X2LFi1K+xh8TcRKvPXWW6U9xGLD/t/H
LObj+grfcZ06dSwuP5Om4K+itmamuClye/neR9HGLEoH4g2Y34kFy9c1Cmt4
5hHieoLXM71PiS2nn2imdX559T9lA3ET2PDJFxPRJ9/1SYjSxOtTn7598laf
ALsjthj8SsC+iLUVa7VVn2SOv0Cf8E/FTZ+ICSC+l/guYh+DdfpENJE+iTgR
FX1ibOz3qYNAbA9+BeL+Uvm0k8FPiw0nbvrEOfMxI/zM589XZIf0ScSJqOiT
h+8k9mj1gxJxRPok4kTU9EmIOCN9EnFC+iREdJA+iTghfRIiOkifRJyQPgkR
HZ599ln7vtK3Vj5YUZ4hZ4j6YqzHqBkuhMhvpE8iLkifhIgW0icRF6RPQkQL
6ZOIC9InIaKF9EnEBemTENFC+iTigvRJiGghfRJxQfokRLSQPom4IH0SIlpI
n0RckD4JES2kTyIuSJ+EiBbSJxEXpE9CRAvpk4gL0ichooX0ScQF6ZMQ0UL6
JOKC9EmIaCF9EnFB+iREtJA+ibggfRIiWkifRFyQPgkRLaRPIi5In4SIFtIn
ERekT0JEC+mTiAvSJyGihfRJxAXpkxDRYsaMGfZ93Xrrrd1ff/0V9nCEKFOO
OOIIW4/16dvH/f3332EPRwiRAemTiBPSJyGig/RJxAnpkxDRQfok4oT0SYjo
IH0ScUL6JER0kD6JOCF9EiI6SJ9EnJA+CREdpE8iTkifhIgO0icRJ6RPQkQH
6ZOIE9InIaKD9EnECemTENFB+hQOa9ascR999FHYw4gd0ichooP0KRw6dOhg
8yTnX/Nk7pA+CREdpE/hcP3119s8eeKJJ2qezCHSJyGig/QpHLw+nXnmmZon
c4j0SYjoIH0KB+lTOEifhIgO0qdwkD6Fg/RJiOggfQoH6VM4SJ+EiA7Sp3CQ
PoWD9EmI6CB9CgfpUzhIn4SIDtKncJA+hYP0SYjoIH0KB+lTOEifhIgO0qdw
kD6Fg/RJiOggfQoH6VM4SJ+EiA7Sp3CQPoWD9EmI6CB9CgfpUzhIn4SIDtKn
cJA+hYP0SYjoIH0KB+lTOEifhIgOzz77rH1ft9xyS/fnn3+GPZxYwLx48803
23k/+eSTwx5ObPjjjz9c7dq1bT122223hT0cIUQRSJ9yj/QpHKRPQkQL6VPu
kT6Fg/RJiGghfco90qdwkD4JES2kT7lH+hQO0ichooX0KfdIn8JB+iREtJA+
5R7pUzhIn4SIFlHWJ+b5RYsWuZ9++insoRQL6VM4SJ+EiBZR1Sfm+IULF7qd
d97ZNWrUyI0bNy7sIWWN9CkcpE9CRIso69ODDz5oY+fYaqut3EEHHeSWL1+e
9/sp6VM4SJ+EiBblQZ+ozXT44Yfb/5l7qBk0bdo09/vvv4c9zJRIn8JB+iRE
tIhy/b3777/fxn7YYYe59957zz3wwANuww03TOypmjVr5qZMmVImddbmvDzH
zZw50/3222+J277++mt3zz33uObNm7t27dqZzTHdOVX9vXBQ/T0hokOY+vTN
N9+s0xzh9Wm//fZLjP3DDz90PXv2NL8U89BGG21k97/zzjvu119/Xecxsyfr
1KmT23zzzV3FihXN97V69Wq3cuVKd/zxxye0cdttt3W77b67a9KkielWMtKn
f+HcfPfddzl7PemTENEhDH165ZVX3G2332b7nnXRDK9P+++/f8qxt2jRwu21
114JzWjQoIF77LHH1mle4u/XW28983Xd0+8e169fPzdmzBjXpk0be40TTjjB
vfDCC/bYr9escW3btjU9w7YURPrkTNf32GMPs3Xm6hxIn4SIDrnWp7lz57r+
/fu7ChUquE022WSdfERF6RO8/fbb5qdCU7xOXXzxxW769Oklmp86dOhg4371
1VcTt/3888/2nJUrV7b9WxB06ZJLLjH7YxDpk3NXX321nYPu3btLn4QQhci1
Pn3//fful19+ceeff775ispanzzY35gHq1atWmK7H/NZ69atzXb4ww8/FLgP
P1eXLl1Sznk3dLrBjR8/vsB9cdenQYMGuWaXNpM+CSHSEpb/qWnTpm6DDTbI
mT55eFyrVq3cnnvumdhPoZWPPvpoVvMV8Q/o07ffflvg9s8//9y9tfytlM/R
6PxGbuDAgdKn/w97TGyt8+fPt89P+iSESEUY+sS8gM0rDH3yvPXWW27YsGH2
916nGjdu7J555pmM89aqVavcEUce4Z577rmsXofHEbs/dOhQ6ZP7N76E9cET
TzxheWrSJyFEOuKqT57PPvvM/PPVqlVL2P0OOOAAy/MNxo4HwaeFH4qfRTFk
yBBXpUoVt3jx4gK3x1WfRo8ebfH35NoRvyl9EkKkI+765Fm7dq276qqrEjrF
ceGFF7pRo0alnMeIifj444+LfF7mYHxcycRRn1a8s8LVq1fPzgmsWbNG+iSE
SIv0qSBvvvlmIbvfueee62bNmlUqz++Jmz6xF23Tto2bPHly4v1Kn4QQmZA+
pebLL790N9xwg6tevbrNZ8QaHnzwwW7JkiW211pX4qRPvhbVLbfcUuC9Esfp
aw1Jn4QQyUifMoMdr3379om4dJ8/9cgjj6zT/BYnfSIOYp999rHz1vO2nq5b
926uR48edg74/Ki70eOWHnYtlvW5kD4JER3CqA/L61x66aWWM1tSfQrWh913
331LeYSFWbp0qcU6eI3abLPN3CmnnFIiu1/c6sPyGQ8ePNhi83v37m1Hnz59
3K233mrnoE6dOq5v3752LZYlqg8rRLQIQ5/Y61x22WWR0idg3OynqFfk4yio
JXHIIYeY3S/bOnJx06d0kEPGOSCvORdIn4SIFto/lYyvvvrK/FPYrXxfD+xX
5PkWhfTpX7w+de7cOSevJ30SIlrkWp/IGbr33ntNU9Zff3133XXXuXnz5hX7
tcPWJ8+yZcusr4e3+22xxRbuxBNPdC+//HLav5E+/Yv2T0KITORan9gvUbuO
uYlafPzkNuxj9FPi+PHHH4t8nnzRJ8DuR/z0tddem4j3I8+X+uzUkeV9Bom6
PjF+atA/9dRTVtdpXZ6Hc1MafU+yQfokRLTIh/65zO/HHHOM5cd27NjR3Xjj
jTbXs69KRz7pUxDma7TH1/djLiRWkboJnqjrE9cJNTaIa8QXxx6YvKZ8R/ok
RLTIF3066aSTLPaAuZv+SVOnTrV5D90ib4Y1djD+IF/1yUN9P+Lfvd2PXobH
HnusW7hwoY0dm1ZU9Yl5npg7WLRokWkT8/1xxx3nrrzySosnX9fek2WB9EmI
aJFv+hSEeQ77D1rF3H7eeee5adOm2e9AnYd81SfgfTEnss/wcRTEhDC3t2zZ
slzok4f1A5qE3Y8ejWeccYbVgKXvSKr+wWEgfRIiWnh9Ik66a9eurlu3bjk/
qG9Djm1RdRmY/9hTYf+76aab3GmnnVakPrGGHzFihMWIFXdc7HHI0ykNqHtO
Tmowz5d5khyqMOH84PMjFrE452XHHXfMaNNjrcNjsf/x3PwM49oKHuzDd911
V1sjSJ+EyH/IL/XzZZhHcepXsA5mbiSHqih98nuzko6Lebg0WbFihcUv+udn
33rkkUdaffNc9t8CtGn27Nk2huKeF7SVPWA2r8EaiDVF2NeYP6RPQkQD5g9y
+4866ihXt27d0A72FehOpnFS/2bSpEmuXbt2rn79+q5mzZpZ6RN1dPBjFXdM
2LDoXVgW5xzf2dFHH225vX6+x/Y0Z84cs2uWNd7PR40pXpu6P9gaszkv1CMi
PiLTcxNfj32PfQu2Pj4v4u7DvMb8wbUwavSoMj/HQojok87/BMREtGnTxjSJ
mDfsROw18j0+IlvoJXvXXXe5nXbaqUC8XzZ5viXF72m22more71TTz21UAx8
JlL5n4DPkX0Snxc/Oej3KIQQUcXrEz525skvvvjC7HfsL8455xz3/PPPWx9a
6l178lGffDxHKsjzSpXn42PcXn/9dTdgwADLm0Iz0A7yp9544411qqGb6vWw
6VWqVMlehz1NcbQJ0Cf+jpwv+jsuWLDAYvfwpZEThfblS0yEEEJkC/PZhAkT
LB9ozJgxbv78+aZPzG8jR440Wxxrc2qH+np3qcg3fSLvCVsdcXrJoEvoDjau
oO2O9/D000/be2D/xO+8Z/LADjzwwMR+ivOBLS6ozyUh2aaHPa8kPi9iH/CZ
9ezZ056jdevWpqG8t3yLKRdCiGxgj4AOJcdFPPbYY6ZXxNihV9mQT/rEWP77
3//aWA466KBC9w0aNMjuw+/B3jB4H7FzqeJD6Lnbq1cvV7ly5YROUd+Pc1XS
MbKv4XW8TS/berbJME7eUxRycoUQoijYQzC/XnPNNW7x64vNh0QcG/uKChUq
uCVvLCnW8+WTPgH7PLSXuT8Yk85cTu4Wt+NnCpJJnzwfffSR9aXgHHm7X40a
NazPb7Z1gbxNjxxhb9PLpoaUEELEAeoMEMsVhHmzV+9eNj/fcustxXq+fNMn
tAVfGeMhHxcYI5rEbbVq1Sr0N8n6lMk2xvNjR6OHr99PsQfi7/EDpYPnxH+3
rjY9IYQor+CD//jjjwvcFvS/EJtXHPJZnzp06GC34WsjBh5d8PF4aAl7SHxM
/KxXr579zcYbb2y3XX311ZZXxHtLhvdM/Xf2Uz5niee+6KKL3Lhx41I+nriS
oE2POA0hhBCZsf3D0//uH6hbVNy/zSd9AvR38803N63Bj4ZNjfHtsMMOFtuA
hjVs2DDrHFJ6yKdj5cqV5p+in4e3++H7Wr58eSJO4cUXX0zcT4yFbHpCCJEd
zKEPPfSQ22233dzKVSuL/bf5pk/EtW2zzTamLeQRU3uC//scIPSJukzss8j7
vfDCCy3XlfeAH47b/HHWWWdlpdmp7H787cSJE92mm26aqKEUVm1FIYSIIqzz
Dz30UDd06NBi/20+65P389B/kbwu6gamojj+p0zwd8RLDBw40G222WYFahBR
o7CkcXpCCBFHfNw1vpOS/n2+6RNjYs8TtNElx+wlP76o+L3igs/rzjvvTIyh
SpUqlpeF34q+kEIIITJDnij1XUuac5qP+gT0AfZ7F+o/ZKIs9Al4nt69e5v2
B+v7YVfE7ihbnxBCpGbpsqWuZauWVnuupOS7PrF3evzxxzM+tqz0Kfj8y5Yt
c/fdd5/FbPA6xJkTo6HcWiGEKAj9Ja644gqLMwvC3Fwc+1O+6hPjoncDcR/Z
wPuml31Z6gVj+uqrr6xm1LbbbmvnjFxdem5h9ytu/T0hSsrq1avNro/PeciQ
IfY9CdZUYV6g7zT3P/DAA27UqFGKOxU5gZ7n9erXMx8N9UPxlXC9vv/++1Yf
6KWXXsr6ufJVn/Id8q+oL04surf7sZ8aP3582EMTMQAt8jGrxA+R6/f1mv/V
En7vvfes/7L3n9JTcl3rTgpRFMv/WadTO7VixS0sZo8aPRz4R6pXr26x2Gt/
z9w/N4j0qeRw7pYuXWrrVOyQPr6d+rX02BKiLKGeCXl59DKmrnIy2MW5JunP
IkRZw3yIbYkeeLVrH2e9EIMHtbC5Flk7Fec5pU/rBueQ2PeuXbu67bff3s4l
+cXUTsfup7h0URaQC4E27bnnnin7EzRq1Mhii9SjReQLhx9+uGvVqpW7++67
rW5sNrlArP+xT+FHUU25dQO7H7WVdt9994RthfxhalioZ4YoTT744AO39957
m81k1apVBe6j7zKxQvReFiJfII+Ua3XEiBHmF23QoIE799xzrWbQ2rWp7X7S
p9KHeD98097ux4Hdj1pJ0ilRGlADkv0Re/ZPPvkkcTtrJHoAnNfoPPfX3/o+
i/yBOgvBPrHEntNbgjU8/SCIn5gzZ06BGrPDhw+XPpURxPvRKxLfIBq14YYb
mr+QHl6l2c9XxA9syvigk/WJdSm3EeObjxDL1a9fPx0xO/r3728+j3T7JKC3
7pVXXmmx2MRv33HHHWanZu6UPpUd1KDq2LGj+Qv8fuqSSy6R3U+UGNY3xPBR
28TrE3F92Px69OgR8uhSw/fAx7zqiN9BPk42dQ3WrFljtmniLdg78bfSp7Ln
3XfftfVt0O5HvT9plCgJ1DAmFoe+cHDddddZj7R0MRFoGrnv1J3hbzLFnP/6
26/ulVdescfyE79BprVvNpCbif2Afjk64nfsvPPO7o8//ijyOiFHauHChVa7
h7rn0qeyh7UjMVcHHHBAQpv2228/28dKn0RJOOOMM6ymydy5cy0nl/35xEkT
Uz6Wa69Zs2b2nW/btq3ZTTjeeeedQo9dsGCB1U3j4LHU9Sc+2McGk2t5++23
WxzWww8/XOjvyVXv27ev1bCcPn166b5pEVnwP6XrV8712717d9elSxe75sgv
9b055H8qW4jhJ1bF71WJ5Wetu67rURFviNWtVKmSxd3QT6ZJkyYp1zroCdcc
9+MTBfZY5FLSVya4pn311Vdd1apV3U0335SIWyefD7uc32/hQ6pdu7Zdy9Wq
VSs0b2Bf5L6ddtrJ8rSEgLp16yauT64t9tOsY84880zTJPrDJueOKn6vbMDO
Sl9j+u16XaJuHz2AsfMJsa5069bN/E+XX365xeCkuq74Tp933nmmRehKkIsv
vti+919++aX9/u1337rqe1W3WKpk21/y7/SpxlaHPeDTTz9N3E78FXGFXO/4
XGUbiCeseYhjZr2D7Qi4LqhBx7zYuHFj20899thj5jf1j0lG+lS68D3GPsJ6
1dvxWHsyl5RmjT7iiPn8sdtw8H9yYkR84JoiJpS6JcRHpeL1Ja/bNYgdOQjr
p6ZNm5pN0MdXsM/ftMKmto7NBP7rs88+291www02byxevNhuZz3MvEMO4JZb
bml1/0T8YD/fokULqxHbvHlzsxNTz2TAgAEWm9ehQwfLj8gG6VPpwfcbm77f
L5HbT6/fdDbXdYEcN3Iw6UnPT2JjqGGh9Wp8GDx4sF1n5DulW/tQe496xuTs
BiFWgnxJ/7dcN1y76Aprn0xQF4W1L7YYbIG+LjOxP8xL+BDwa1P/S8QLYhvY
y7Neou4W9XNGjx5tNQtKUvdN+rRu8D3Hxl6nTp2ELuGzZu1YVnY81qm77LKL
rZv9gU6RVyXiw6xZs0xj6C+TDvSHmHP2PEHIn6JPNPkmQJ1pYqyICSwK1sLs
n7AVUL+C3jPYDqlJS7wFY8L2V5TOifIH+Z4HHnRgIS1pfkVz64teXI2RPpUM
vnusFcg583Y84pzYL6Wqh1aasE/u1buXxVcwR3CUxR5NRB9yeDmSv9sTJ060
dRRrWyCXH18StpeiILYHOw1gu+b/7du3t+uSPh7EpRK7ob18/GC9w349OceB
fTXXSnH7ukqfig92POKl/H4JWwYxS7no/c73H02kFsiHH3xY5q8nog0+aepH
B6Huka8r7a9ZasowB3Tu3LnQcySvfU455RQ3depU+z++JuzL519wvj1u9uzZ
FrNRVF9RUT6hVgRzIjE7fp3+8tyXzd5DrkFx1yz5pE/Yyoh3JUcj1fs4+uij
LZ81jLhs9kvEJh1zzDEJXcI+Qk2OXMbj4ef2r4/t/8KLLixUH1QIT69evdwO
O+zg3njjDfsdPWKPRFz4a6+9lngc8VaXXnqpxfX4WD0eSwwe+yM/N2C/Y39E
zDr07NnT7MvkYEHv3r3t+kyVVyXKP/ibiBdlfiJuHN8ka3nWKyXZT+eTPvlr
GztZ8ljQBu7Dz0aPxlyBZj733HPWY8vb8fg/sUu5tq+jy9SkImadGGD0kfHg
X6AegOwpIhn8TKz5Tj/9dMsxoRYnMXZeT4KgKdSTZj7hsRdccIFd696vjb+b
+8iT4Dr09SgmTJhg1x7PyZqJa7JTp066HmMKGhW0L5HLXdJrIZ/0iToqzLXU
t3zqqacKvCdsET5ONlfX/bBhw+y77M8z9TnIiec7nw/gF69Xr56Njd4q+TIu
kV+wrmGv9Oyzz9o6JlOvd+J+582bZ2syaswQe+59BthreB7uJ6cheb4gRoI4
Qf4uuDcT8YJ9Nz5K1kSbbLKJ1eCi1mhxybf+hFzv55xzjo0HfyswRmKpfT2g
sp6DsaHz/cLHQ8w2r0u9PPplUAs+32Ctgj0UDSXXTQghwoJcb+I3yX0AdKly
5co2h458ZGSxniuf9cnHEWFDI889qFms56ZNm2Y+2nTHk08+afuxbGFNiR2D
+pq8FvM9cU/EOHFuqcORj/AZspYlzrddu3ZhD0cIEVOYi4gTw7fpfZjcxlxM
zAx+0HR1ItI9Xz7pk38vvl7typUrzb7N7+wTeW88Bj9VNvXcscfNnz+/yNck
xgFbu/875npiZdkvkfPq91B9+vTJ0ZkoHmgrtUKziQ0WQoiygDpF1BEmdi8I
+w72Fqz5fY3hbCgtfWKPUxxdzAR7I/K40IMpU6a4Y4891t4X4wTeK7nrxAaw
b0x3bLfddhZX5PeZyTBeakPxvrHj8Rr8JNcw2O+N18PXm88ahc+AmIlJkyaF
PRQhRExhnUx+N3newTwndGbgwAFuiy22sBibbCkNfWL+vvHGGy3upzTivr0+
oRc8L5pB7Hxpxezh40X3yKsP2vGIo00H7/Hmm29OaNRdd91VKmNJB+uQVPFV
qfB7TuJlsq1pJYQQpY3Zoh4ZafuCocOGJm4nZoB4Y2JCi/t866pP1O4i3pR5
uzj+nkxjom+it7WhH+xfSuN5yZX3/YI52GexX8pmz5m8jyptfxTjI2aK+F96
n1CHgh675Jf4+zm/5Bb4nobsAclvwR+p2kZCiLAh52DMmDFujz32MDsXdp0j
jjjC5rPi1o7IR30C73PyMXuZ4mGLglhH5u699torYcejVh1zfHK/gaIoK1sf
/QnIySd3n/fOXpE4GOIIyS0hdpya9OREUquCvjonn3yy2T4ZT3FsukIIUdb8
/MvPFj9A3SxijNEa8mGYd32ueFHkuz6hJcTRlwTixKkxxjzun4taL+saQ4BG
sRbwGkUP0ZLC+V+xYoVr2bKl2fTSPYbXJC5m7Nixdhs9Szkv5CwLIUS+wxxG
T0t8I8xd2LGIQctEvuoTdiv8bNSYLC68J/KA8If5PRg9A4YMGWJaUBqUlq2P
fRO5/b5WTCbYG9MrAd8Z54b8fWpY8DnnY8yGEEJ4fFwb+wZq5bOHIm6aeD9y
iujvTg+7YAxDvuoT4FMrjl2PcfCevR3P+5fuueeeRE/r0sTHhXiNIua9OHDu
yeenD2m2j6ePB7XQqBmB3ZI9F+8ZPeZzRrd8z0L1NhBC5Aten1L1dqD3C3V6
qDPAWpt9FT3GSlufiNfONfjjqD1I/k/QjpcpHq+0SLb1EauQLdTjpGdUcV+P
nqm8VqpYSTSLz5gYC8bC54xeCSHiC+tV7CzEW4V50K+V+Tod6BH1Ju69916b
v5s1a5aol5BJn/g77IbEMAdfj/7Q6B7zJbpAvVpqIAcf06RJkzKpa8CYxo8f
b3sJXp/3QJ0n6hCxV8wVaAZ2Nt+XMNvPipoYxGkMHz68WK+VSZ88nJtHH33U
YhMZG59BaV9rXO9PTn6yFM6gEKIswU6TTT2Dsj7ow5JNjVfmL2o84m+nb1RR
+uT3ZiUdF9pFzHhpQI4PNi16CJPvFYylCyv/J2jrK+55ITaiOK+TjT55qDHC
tUmv5dK+1hgDtXqFEPmN1yfWz82bN3dXXHFFzg90Bt9LUfsnanLjz8ePwd8Q
o5zN/om/Yb+U/Jrswfz+CT8XMQ3Bx1DroqQxeEGIDyCu3tfrDs7xxGaHDdqB
BrN/zObz4rzgHxs3blyxXqMoffJ+KuIKeSyfT2lek3y+1NKSPgkRDbw+ESdW
3Byk0iKV/8nHJpNL06BBg0RuJzV/6PUSBf+Tr4+Af4nX8esA5nXeE78TQx41
eF/EiRNXmC18ll26dCmkT/iyuI91ADESPIbPleuytOG1iBNlXSB9EiL/ySd9
In6PfqrE0j300EPWN4lYa2KY0aTg/irf4/fIg2JP6PvwUeeIuGri+hg783CU
9Yk8XPY32dpkn3jiCYt5OPvss+0zJn/3xRdftNohaAb1Jz744APLhysrpE9C
RIt80SdsdeRxXn/99eZ/Jw4iE/moT4xp1KhRib0R8yA9PHlPybHxviZeFPUJ
+MwGDRpke56irht8a/591q1b1/KMsRFS0yqXfSWlT0JEi3zQJ+93wF6UbS3V
fNInxkLPXOZg6gsyJp4XG1iq91Me9Ano4YFPEH8gOkPeku8PzF7X5xtTx4rP
F/hJ/6swkD4JES3oa8f3Ndv4uXxiXfu7Y0vyfqGS1CjFVkc8HrHxvo86Wokd
r6i8WvZUPJ649lz1fC8r6IvNvggbLesdfieugRwp4u/yqXcv9R4573369on8
eReivBNnfcLu5POPXnvttWL9LXu3+vXrF9Al7FbZjqM86VMQ9lJXXnll3tZ9
lT4JER3irE/Ye8j9IfYcW19RMJ9hm0JTfIz4+uuvb70v3n333WK9dnnVp3xH
+iREdIizPnmK8rv5frXE43ld4jWpeUqsXkmQPoWD9EmI6CB9ygwxGw0bNkzY
8dCo5Hi8kiB9CgfpkxDRQfpUGPZT9NTz/Zc4NtxwQ7PjZdNPIhukT+EgfRIi
Okif/gc13+bPn299b70uHXTQQa5r165WXxuocZHOHrjinRVW44KassTwzXl5
jvm4UiF9CgfpkxDRQfr0L9jxqGvt7XjVqlWzHKVgzSX+Tz4PvX+Tofde1apV
C9Uipebb559/Xujx0qdwkD4JER3irE/4kGbNmuWOP/74hJ5UqFDB+nikisdj
PqNmAnV5gnzyyScJbeK5RowYYY+hxvoxxxxjdVeT91HSp3CQPgkRHeKoT9Q5
QD8OPPDAhC4dfPDBrnPnzil7JAahJgS1B4Jz2/Tp060fEnuoZB3CFkheFHbD
INKncJA+CREd4qhP1Pfzdjz2PfSWyCb/CainTl2ECRMmJOY3+umxR0o3361Y
scIeE7xf+hQO0ichokNc9IlaRNjmDj/88ESPOuxwxc2rBfpjUNNo6tSp9vuC
BQus12u6+Y7XoW6s9Cl8pE9CRIfyrk+ffvqp6YjvV8tBrbjk/UxxueXWW1zF
ShXdzV1utppz3bt3Nw0MQlwEr4MdMblvu/QpHKRPQkSH8qxPxIX7+YjD1yst
jXnp9z9+tz6v1Cvfcccdrf5e48aNTXfotUcNulq1aln/p959Cs+F0qdwkD4J
ER3Kgz6Rr+THTk1ybqfvktel7bff3mpql7QWUTqY36h7RA8k34cweGADxK6X
KgdK+hQO0ichokN50KeaNWu61atXW/xcxYoVE/pwyimnuJEjR+akr9XXX39t
trz27dtbn8XZs2dnnP+kT+EgfRIiOpQHfcK+Rp6R16XjjjvO6jjk8/wjfQoH
6ZMQ0SHK+oQG+ThxjipVqpSJHa8skD6Fg/RJiOgQZX2aOXOmjRs7Hn3GozTf
SJ/CQfokRHSIsj4Bsd1RHLf0KRykT0JEh6jrU1SRPoWD9EmI6CB9CgfpUzhI
n4SIDtKncJA+hYP0SYjoIH0KB+lTOEifhIgO0qdwkD6Fg/RJiOggfQoH6VM4
SJ+EiA7Sp3CQPoWD9EmI6CB9CgfpUzhIn4SIDtKncJA+hYP0SYjoIH0KB+lT
OEifhIgO0qdwkD6Fg/RJiOggfQoH6VM4SJ+EiA7Sp3CQPoWD9EmI6CB9Cgfp
UzhIn4SIDtKncJA+hYP0SYjoIH0KB+lTOEifhIgO0qdwkD6Fg/RJiOggfQoH
6VM4SJ+EiA7Sp3CQPoWD9EmI6CB9CgfpUzhIn4SIDtKncJA+hYP0SYjoIH0K
h7Zt29o8WadOHc2TOUT6JER0kD6Fw3PPPeduv/12N3bsWM2TOUT6JER0kD6J
OCF9EiI6SJ9EnJA+CREdpE8iTkifhIgO0icRJ6RPQkQH6ZOIE9InIaKD9EnE
CemTENFB+iTihPRJiOggfRJxQvokRHSQPok4IX0SIjpIn0SckD4JER2kTyJO
SJ+EiA7SJxEnpE9CRAfpk4gT0ichooP0ScQJ6ZMQ0UH6JOKE9EmI6CB9EnFC
+iREdJA+iTghfRIiOkifRJyQPgkRHZ599ln7vm655Zbuzz//DHs4QpQZf/zx
h6tdu7atx2677bawhyOEKALpk4gL0ichooX0ScQF6ZMQ0UL6JOKC9EmIaCF9
EnFB+iREtJA+ibggfRIiWkifRFyQPgkRLaRPIi5In4SIFtInERekT0JEC+mT
iAvSJyGihfRJxAXpkxDRQvok4oL0SYhoIX0ScUH6JES0kD6JuCB9EiJaSJ9E
XJA+CREtpE8iLkifhIgW0icRF6RPQkQL6ZOIC9KnaPL555+7J5980k2aNMmO
8ePHu2+//TZx/8qVK92jjz5qj5k4caL9/OWXX0IcsSgtpE8iLoStT1988UWh
efabb75J3M88O3r06MQ8O/nJye7nn3/O+TjzjQ8++MCdfPLJNk9xnH/++W7N
mjWJ+99++223//77233rrbeeu+KKK9yvv/4a4ohFaSF9EnEhbH0KzrOMgXnW
69Pff/9dYJ5df/31XfPmzd1vv/2W83HmI4sWLbLzUrVqVTuPyQwfPty06fLL
L9c5K0dIn0RcCFuf0KCFCxfa92233XYrNM/+9ddf7uGHH7Z59tLLLnVrf1+b
8zHmKz/88IOdt1q1arkvv/yy0P2tW7d2e+yxh9kC48Bnn33mRo0a5b777ru0
j/nwww/tMUXZOmfNmuVmzJhR2kMsFfJJn/j+vvbaa27ChAkZHzN//nw3efLk
jM/Fdx37yZIlS0p7mCKiBPXpjjvuCGUM33//fWKe/eqrrwrcx/evTZs2pl1x
mWez5aeffrI5apdddimk68wH2223nXtk1CMhjS63YLs87bTT7DpatmxZ2sex
p+QxHTp0SPuY5557zm2++ebu0EMPLYuhrhN8X+vXr5+wNwwYMCDU8WDfqFat
mqtUqVLax6A7TZo0sfFiq08FGsZ74X3ts88+7r333iurIYuIwDUxbdo0u7a4
Lg6peYj79NNPcz4O9gHMs7vuuqt7//33C4xv/oL5rkqVKm7EiBE5H1e+g83u
kEMOcTvvvHMBffr999/deeed584666zY+OqYJ70vrmbNmikfw7W9zTbbJPbq
6HsyXHM333xzYv7v169fWQ89KxjXrbfe6rbffnsbl3+v/L9///6hjYnvpR/H
VVddlfIx+I65n6Nx48Ypn4t16AknnJDwl44ZM6ashy/yGK6bmTNnuk033TRx
rXOw5r6oyUU5tRuw9mWeTd4HrF271vxRZ5xxhmLPUoA+MRdz3j766KPE7Y8/
/rjpPXuouHDQQQclruHNNtvMzZ49u9BjBg8eXGBub9u2rX0Pgrz55psFHnP2
2Wfnxb593rx5BcaVfISxj+J7i5YE1wUrVqwo8Jgff/zRYnOCY586dWqh847G
Bh+z0UYb2b5LxJOnnnrK4g3SXe8PDHmg0DVUVnCd16hRw/ZPxOt5iI/eeuut
LQ4gV2OJEuyTTj/9dNs/eX0ixhy71HXXXReb7/fYsWNNj4866ih36qmn2vWL
DSz5mmHtxX345dhH7b333m7x4sUFHnPBBRfYY9q3b59Yu7344ou5fDuF4HNk
L5zuu+qPe++9N6fjuvHGG+11mzVrZjE6/P/+++8vcN7x93kNu+GGG+zn8ccf
X2Dv+sknn7jDDz/c7nvooYfcueeea3NTz5499b2PIfgpK1asmPFa53pZ/fnq
nIyHeZZ5hX2A1yd83GhWp06dQvcB5yt8d1mb8l32PhdsQNiugrHmZQXzJtrA
64V5bLzxxrb2Zj/EvLfTTjuZtpCP4OE6Yp5Etxj3EUccYdf5f//738T1RXwF
63a+G/josX3zvLyGnyf52+rVq+f0/bFuK0qbvF0sl+PiNStUqODGjRtn/iJe
f6uttnKrV/9v3sCnzOMGDhxovuXKlSvb78F1wZQpU+w8s87iPA8dOtSe94AD
Dkhcx6xhO3fu7HbffffQrzcdZXvw2WdzvWPrLo3XY211/fXXm58pFVyTxEAz
z7711lt2W9euXd2ee+6Zdp5lTvn444/dG2+84d59913TuLjh9cnHBHAe2BOw
70wG/8yDDz7ohg0bZrb90og3Zw2RyeaUy4Nr2mtIx44d7bamTZua/w2bMXur
LbbYwmJBATuUHzs2KDjzzDMLxE6w9sdmxbxLbh4wF+fLe86Hg3Ul5511wYkn
nmi3eVvjSy+9ZPta9JwYXWA9wPnbb7/9Evt77//G3+A/Qz4vbrv99tsTz6Xz
rqOsDmJ8sO2nm2fRJx7HvLF8+XK7pvGjpNrfY8u65pprzA5wySWX2HekVatW
tv6NG6wpOW+vv/66a9mypTvnnHNSavU777xjdj8e2/mmzin1ifPKHoTznw28
DlqHHoZ9BOObiQf1cxm+I+LJ/TXoryfWSpdeeum/5+Ofc/j888/bvos9PPHS
nrvuussew34LDj74YPsdO2Cu3hsxhxtssEGR3zFsHrk+70HbJ3YZzjs2ec4z
sRCMq0WLFonzzhqK65A9KrHk6BV7VmIvg9/f6dOn23qVPRRrVm/fxOYX9rWm
o+wO5hPm9WzWInfffXepvS7r90x42/TSZUvdZZddZvFnxEckQwwWNgOuVx/r
t2rVKttrkbsbF5+L55577rHzhl2Pc/Dqq6+mfSyxJpw75u9UMC9jf2GujjLs
rQcNGmTnBRsANif+jx8zCJrGnoq1vI/Z47sRXBOxtyL2gjkU/dpwww1NB3Kd
7/zYY49l/M4yxkx5X7kAGxzfW8bpbazbbrttIRsI+1Mew/f1pJNOMvsscZLJ
a1FsAbw39v3oMz5DxZ2Xf5j3M2kU9oyBgwbm1DfZu3dve+1bbrnF9k7Yp5Nf
H+1p2qypXfPBOAogTmDHHXcsUIMuDvTt29fOG+vRLl27pH0c8Y+cH+yB6WAP
hi027HiA0oDrZ999901c03Xq1El5bRAbGrz2U9mge/XqlYglYp4MI+aceZm4
DvKykr+v7O1S5WeHAetfb6/jwM6Rah4J+r/5nFKtK5NteuRnKl4iHvA54ytO
pVH33X9fzq8D9mroItdtjx49Ul6v2LDRpi5duhS6n3mGPCn2UnHi4REPZ7V+
xk/HXoL4qHSUJ30C5nN/TWMrTsXcuXMTcXrEo6Xas8Mmm2xij0Efwpwjvd3L
vy9sZfl2ze+1116J8VFfMxXEGvq5B99eqnP69ddfu4YNG9pjyNnN1u4sygf4
NBs0aFBAo3K9b/I8OPRB0yf80en2QKxbGSNzbXCM/J/1Mf6FuNVAnTNnjtno
ySnJBHERxFcHfSvY+bCvEFvA4ePg+Olvq1u3bl7k/5QE9kLHHXec+dQy5c+R
e8d7TZcvxvX1zDPP2Hmm7lHYMOf7w8d25BPY8g888EA3cuRIq3eRCmLK8VPt
sMMOGW2lQ4YMsXkBW6D2TvGDayN4vYcFa3auadaHqa5DrnNqpFBPLljfHFg/
YiPAZuljhV955RVb6/p5NvlgDiZGMC7+KuJP8P0H52n+j//q6quvtgOfP/4Y
zqO/jfvTxV2WF7h+MtWPE2UDdQRZaxYFOVXKMRH5DDpar149W+8nrxnHTxhv
ekMchtc2H4vm59nkg1os1F2Jw5qMfdKxxx6btraMh9gq8kvQdiGEENmBPhGz
R/x00EfAvoqYIWwvcYuNyBZi+vDNkfeYifLmfxJCiFxBLgqxwuRNAvk33Mbc
S0x0HPZCxYW9Ez4k/HbUkstkwy0v8eVCCJFrqJtCTQBiOrp3726x0uypgnnn
oiD4mIiP4hzh20uX+wT4mdg7Jfv3RH6Db0b+GSHCh5hD+vNQZ4Y5Nxd15oTI
V9jzEs99zDHHaI0mhBAiLyD2tFGjRma7pbaC9EkIIUQ+gL2WmlbUZ8IvK30S
QggRNvgKD65xsNVdJG+N/Iowel8LIYQoHk8//bTVfO3WrZvVLaJfIwf1Hamb
nY91F4rDnXfeaXVq0SRyLqgL6HvT5Av4hqk3zmdATTJ67PAZ8JP6Rtnk5goh
RHmDXi7kxOGbIeYTWxj9BtEs6mjQz4EaO1GEXinU+n3kkUfsd/L/8lGfiB2l
fxM1s8hbIKaJz4G6RyeffLJ9DiNGjJBdUggRO+jTwtyYnM/la76zjo/a3Mh4
6ZNy+hmnJ3qkUw+F9zNjxoyQR1cYeuDwGdCnLXiu2ffRP4P+hflSe10IIXIB
a/dTTjnFbbbZZoX6VrKG972eopY3NG36NKurOvPpmYnbqOPl64DnG9QQY2x3
3X1XAX1CW6lXxn2qpyWEiBPUEiQviN5IyXskbErMi+R3R6k+MLnV9O+lVv+q
latsD4L2+j7A+VjjlhrM2B6xrQY/B2qR+R7ucex7LYSIL0899ZT1SaIvc3Be
pI4j8/vmW2zuXnjhhfAGWAKwS5LnRM0U9h7Uq+Kg7r/vfZ5vEMNBz4Fk3xgx
Ktj9WCOk68EhhBDlkb739C1g82IOpKfuxRdfbH3CRowcEfIIi8eyZcusV1L/
/v0L3UfPSeb6fNOnr776yvq10HPA13Sm/uPDDz/sdt11V3fxJRe7Tz6NZoyK
EEKUBLSImD362rF+P/HEE80uRu+Q2267zWx/UaNZs2bWK5eessnQww8tTt4r
hg39nfD/oavUKKbHC58B+z9iOX75NX3PSCGEKI/Q537nnXd2tWrVstgw1u7s
LdAr8m4ywWOpkUvs9pgxY6w/MXWJw2TixImmP9dee21K/bnjjjvsfub9fNIn
8p6wsbJfwq66dOlSq3dx5JFHpqxT/PPPP7vHH3/c3u/o0aPNT8jB50BMi2pt
CiGiDn2smK9bt26diH+gRz01gJgb0/UYWb58ubvwwgutl/jdd99tPYeJf6Z/
axgw9lGjRrmtt9na3k/16tVtnvagRQ8++KDlQnE/72/w4MF5oVGMnT4D1LVA
l4Bx9ejRw2yR6E8yxPSx7+W98Bngb+vVq5c788wzTddWrFiR67chhBClCn0Y
mePuu+++xG3MjYcddpj5Q2bPnl3ob8h5rVGjhmvVqpXFpgPzJfVXp0yZkrOx
B2HM9IFGb9HOJUuWFIp1oxeavx8d4Pd8iEkk9xl7JLY9D+9n7NixiZzpZLif
uAk+I96Tv23u3LmuYcOGORu7EEKUBcxnaEqlSpXcrFmzCtzepk0bmxupXxAE
2xP7JuoZpPLviOLBuebcb7rpppaXG7x93rx5Vktin332KfR36Cq5xsSd+5xd
ej8TZyGEEFHn119/NR88R3JMs897uummmwrcTn4otw8YOCCXQy23oEPYGTmn
xKMEwZfHvoo4ed8H24M+UZOqSZMm9jsxiyeccILq9AkhIg/adPsdt5tP3vxG
g+8v4It5fcm/fqltt93WvTDrhUTeDbVWK1as6BYuXBjW0MsNnO9FryxyNWvW
TMRsfPzxx4n70aB69f+tG3HllVcWiJNYtWqV2fZ22203i0knD4C4P3J5hRAi
yrDeZu190UUX2U/sfMHYO3pSdOrUyW6/5pprzJfDfIpvw8f6Af4najEQd/bA
Aw9Eto5sGHA+iZWkRiC5ZtSuTfYD4s/jM6IvyBNPPJG4Hd9TlSpVEvUSyesi
rl4IIeII8yI2JGLE2H8BMeY+Zpv6SOqrVPawr2rXrp3tmby/ifOuPa0QIq6g
T6eeeqrVCfI1DuDll1+2eG3izUTZw9qAuAjWA0IIIf5l6LChls/r1+rYAbE/
sZbHJyLKFvZOffr0cRtttJHFo6eK/xdCiDhC3YLOnTubna9x48buqquuMr9J
/fr1wx5aLGDfOnPmTKvZMXz4cDd//vywhySEEHkDsXz4O8jTJW6CGAn2UUII
IYQQQojS4/8BTvTgpg==
"], {{0, 306}, {424, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{195.91015625, Automatic},
ImageSizeRaw->{424, 306},
PlotRange->{{0, 424}, {0, 306}}], ";"}], "\[IndentingNewLine]",
RowBox[{"sol", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uop", "-", "uB"}],
RowBox[{"\[Beta]", " ", "Rg2"}]], "+",
FractionBox[
RowBox[{"uin", "-", "uB"}], "Rg2"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"non", "-",
RowBox[{"inv", " ", "input", " ", "port"}]}], "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uon", "-", "uA"}],
RowBox[{"\[Alpha]", " ", "Rg1"}]], "+",
FractionBox[
RowBox[{"uip", "-", "uA"}], "Rg1"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"inv", " ", "input", " ", "port"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"uA", "\[Equal]", "uB"}], ",", "\[IndentingNewLine]",
RowBox[{"uid", "\[Equal]",
RowBox[{"uip", "-", "uin"}]}], ",", "\[IndentingNewLine]",
RowBox[{"uicm", "\[Equal]",
FractionBox[
RowBox[{"uip", "+", "uin"}], "2"]}], ",", "\[IndentingNewLine]",
RowBox[{"uod", "\[Equal]",
RowBox[{"uop", "-", "uon"}]}], ",", "\[IndentingNewLine]",
RowBox[{"0", "\[Equal]",
FractionBox[
RowBox[{"uop", "+", "uon"}], "2"]}]}], "\[IndentingNewLine]", "}"}],
",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
"uA", ",", "uB", ",", "uip", ",", "uin", ",", "uop", ",", "uon", ",",
"uod"}], "}"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"FullSimplify", "[",
RowBox[{"uod", "/.",
RowBox[{"sol", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.7509204986408997`*^9, 3.750920757015492*^9}, {
3.750925225837433*^9, 3.750925238677655*^9}, {3.750925302929167*^9,
3.750925319331717*^9},
3.750925354843845*^9},ExpressionUUID->"9bf61411-6669-46da-b102-\
d2480d1f0c91"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"uA", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "uicm", " ", "\[Alpha]"}], "-",
RowBox[{"uid", " ", "\[Alpha]"}], "-",
RowBox[{"2", " ", "uicm", " ", "\[Beta]"}], "+",
RowBox[{"uid", " ", "\[Beta]"}]}],
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+", "\[Alpha]", "+", "\[Beta]"}], ")"}]}]]}]}], ",",
RowBox[{"uB", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "uicm", " ", "\[Alpha]"}], "-",
RowBox[{"uid", " ", "\[Alpha]"}], "-",
RowBox[{"2", " ", "uicm", " ", "\[Beta]"}], "+",
RowBox[{"uid", " ", "\[Beta]"}]}],
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+", "\[Alpha]", "+", "\[Beta]"}], ")"}]}]]}]}], ",",
RowBox[{"uip", "\[Rule]",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "uicm"}], "+", "uid"}], ")"}]}]}], ",",
RowBox[{"uin", "\[Rule]",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "uicm"}], "-", "uid"}], ")"}]}]}], ",",
RowBox[{"uop", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "uicm", " ", "\[Alpha]"}], "-",
RowBox[{"uid", " ", "\[Alpha]"}], "+",
RowBox[{"2", " ", "uicm", " ", "\[Beta]"}], "-",
RowBox[{"uid", " ", "\[Beta]"}], "-",
RowBox[{"2", " ", "uid", " ", "\[Alpha]", " ", "\[Beta]"}]}],
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+", "\[Alpha]", "+", "\[Beta]"}], ")"}]}]]}]}], ",",
RowBox[{"uon", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{"2", " ", "uicm", " ", "\[Alpha]"}], "+",
RowBox[{"uid", " ", "\[Alpha]"}], "-",
RowBox[{"2", " ", "uicm", " ", "\[Beta]"}], "+",
RowBox[{"uid", " ", "\[Beta]"}], "+",
RowBox[{"2", " ", "uid", " ", "\[Alpha]", " ", "\[Beta]"}]}],
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+", "\[Alpha]", "+", "\[Beta]"}], ")"}]}]]}]}], ",",
RowBox[{"uod", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "uicm", " ", "\[Alpha]"}], "-",
RowBox[{"uid", " ", "\[Alpha]"}], "+",
RowBox[{"2", " ", "uicm", " ", "\[Beta]"}], "-",
RowBox[{"uid", " ", "\[Beta]"}], "-",
RowBox[{"2", " ", "uid", " ", "\[Alpha]", " ", "\[Beta]"}]}],
RowBox[{"2", "+", "\[Alpha]", "+", "\[Beta]"}]]}]}]}], "}"}],
"}"}]], "Output",
CellChangeTimes->{3.7509207379909897`*^9, 3.750925206356399*^9,
3.75092523927822*^9,
3.750925355121166*^9},ExpressionUUID->"d38ce190-98b7-4f03-bf02-\
03de533890a6"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{"2", " ", "uicm", " ",
RowBox[{"(",
RowBox[{"\[Alpha]", "-", "\[Beta]"}], ")"}]}], "+",
RowBox[{"uid", " ",
RowBox[{"(",
RowBox[{"\[Alpha]", "+", "\[Beta]", "+",
RowBox[{"2", " ", "\[Alpha]", " ", "\[Beta]"}]}], ")"}]}]}],
RowBox[{"2", "+", "\[Alpha]", "+", "\[Beta]"}]]], "Output",
CellChangeTimes->{3.7509207379909897`*^9, 3.750925206356399*^9,
3.75092523927822*^9,
3.750925355125577*^9},ExpressionUUID->"ccd22c89-3200-41cf-bef6-\
1e3fd308a79c"]
}, Open ]]
},
WindowSize->{808, 755},
WindowMargins->{{186, Automatic}, {-325, Automatic}},
FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \
10, 2017)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 25890, 448, 502, "Input",ExpressionUUID->"9bf61411-6669-46da-b102-d2480d1f0c91"],
Cell[26473, 472, 2974, 80, 221, "Output",ExpressionUUID->"d38ce190-98b7-4f03-bf02-03de533890a6"],
Cell[29450, 554, 540, 14, 87, "Output",ExpressionUUID->"ccd22c89-3200-41cf-bef6-1e3fd308a79c"]
}, Open ]]
}
]
*)