-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch4-ina.nb
964 lines (941 loc) · 46.8 KB
/
ch4-ina.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 47803, 956]
NotebookOptionsPosition[ 46591, 926]
NotebookOutlinePosition[ 46951, 942]
CellTagsIndexPosition[ 46908, 939]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt3V+IJNd9//2JvYrH0kq7tiQy/icsx5BB2PHGEWJdBHscCN7HBu349+jB
i02yys+PW2sSWUOch90nCoiQ4LkIZBqDGaI8IOKbyY28BIUeBIEh+GLI1ZKr
UegL5W4v53Iv65lvdZ/u6qo6Vaeqq86fqvcLytZOd1VXd9epOp8+p855/n+/
8b9GH9nY2Pjp5sX//K8/vfvNv/iLP/1//8+rF//4v37y0x+/9pMf/d//x0/+
8kev/egvrv/vj1788d9/Y2Pj/7n4j0sX/x0DAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAgOfu3LkT7+zsxGdnZ7nHPvzww+Qxk0WemyXbNFn3xo0b8cOHD3Pr
n56eGq9/fn6eW//k5MRo/d3d3fjRo0e59e/fv2+8fpGjoyOj9V999dVO1j88
PDRaX46BIgcHB0br37t3r3D9t956y2h9eV4R2a7J+rKfRdSxXbXI51REPleT
9eV7AgAAAFy5detWvLe3V5ip5G9S3zZZitaXnGe6flGmkky4zvoPHjwwWnd/
f7/ws5FMuc76kilN1tdlinXXPz4+Xmt9ybQm6+syjfx9nfXfeecdo/XlfRaR
97XO+pIVTdaX4wQAAABwZXNzM6k7AwAAAADCI9PUkekAAAAAIExkOqAd0o9Z
+vsCAAAANpHpgHZQlgAAAOAC9VCgHZQlAAAAuEA9FGgHZQkAAAAuUA8F2kFZ
AgAAgAvUQ4F2UJYAAADgAvVQoB2UJQAAALiwtbUVHx0dud4NIHitZbrpOI4u
tiXb2xhNUg9M4pH6+8Yonmg3AAAAgCE5Pz/v/DUm41E8nkwLHpnG4yiKR4WP
FW7I/Lm5dUdxdFE/Ll/7os48Gsf6l5D91b0X/TqTqucb7VvVJmaf4zrbKNl6
PLp4300/+qFotZ1O5bpRNrmpXEemAwAAgC3zOmhhZpGMtBHnqq1lWxttJPkn
WXscXfz36CKHrS5RUf64yE35+nFmby62t7ERZfYnlZPm9ezcZqbVmW0j0tfB
5T0ldfQ1MlOyjTofpFrv4j2PxpOL3LlcRtHGasZM9n/cUV7sj3b7Xi7LzapZ
mSHTAQAAwJYkJ2nzQEGmq8pHSa6K4vF0vu1snVceL3q9ykw3q0NH0k63yDfj
JN+oPDbLk+OV/CNtkBtJzivb73k9PPX6y7c5eywar5eYknzbYBtF68n7TH9U
SV6Mstl5ln/X3O1euXXrVvzgwYOWtmae6QrLAQAAANCKeZ+9xb+nSQZaaVOT
HBVl/l1aP5VtzNqQKjOdZLL5c6sy3bKd66LOPCrIhLJdtf5Utlue4aaT1bav
8Uiy0/K/l+2BUndfPxuVZbqymFyd6bLfYbJWLqOibS1lOoP26dBIf/H79++7
3g0AAIBBkHu8ZnFBd09Z/b6XK2sv6rKSw+b3ua1kutGy7ltWt5X72dJte7m+
htmcZ9K2ZnqPYHG/xqkmiCX3zWX6Si4yY7YNcdGOqM+MlZluMuvLujpUR/k2
0YaW+l72MNNJ/9arV6/G165dI9sBAADEs/rRhx9+2Pp2p+PRSi4o7p9onulm
20utP50m94ItMp3aTjrTZfNd4QvNxkVZ2bOkf6eqM1+8TsG4KaZ9HWf9FtX2
Z21e6TFW9P0ai9srk/6fBa+r3Z+Ke+HKM91sTJjJPDOrz6ONvqKoMs90ue8u
k+nmZWtI7XRyznr11VeTfq67u7tkOwAAMHibm5vtz6k1GafacOb3qRVmAH2m
yzdTrW4n6du4dqabJm1ZhXuWvd9Ns5OV42hm27Pm46zM3kfB4xUZrItMl82U
kfosJ6NMe9149pkzXooFukyXH/dyaH0vVaZTyHYAAGDoup4neTFGynSa7xc4
H4MkGuf7ERa16630tZT75Fppp0ttP7d/+n2cTEaLsebrtIHNdmXerjLPSblM
V3HfX5uZbtYmN8+X8+dNJ/J9TZLPOLff9Lm0ZvZ5p8rBdNbOOyq9ny49h13x
EnobazbTKWQ7AAAwVJ1mupU2qSqTWT8/k6debFfixmqmm2eNNTJd8T1wBv1D
i+59042/Od/mZDrvzzh/L8vVyvt0FvfVHC3G58z/3bRdbZnpind5/l1Gs7Yj
5qrLk3EvT09PW9ziZJ7fNhZ9caeLvpfLfD30drossh0AABia7jLdLGdFxvde
zfohLoaWLB2rcZSpyzbPdNIelW+bM2mnW53LYPU9pu8/W9nx5dx5iywn7WHT
5XoV+bH1vpeLDzqV6bIfftI+FC3usZuocTvH682T3jddt3nrkOmKke0AAMBQ
dFUPTcZnnKxmkPL8NJ7lhrH0vdwomPtbWY5BuazLSh6cZ6gG7XT1conMU1C+
hvRdXIyvkso96bn6llkqPaZm6n1otJvp0nMSzDP1aNmndL7hxXyAq+9x/ryk
7Y52O0Gms8M00ylkOwAA0Hdd1ENVO5rQZZCCtZZtbeUbX4xX0lamqyc/5kv5
NOlqngX9PHSLz8tgH7u5ny75r0zfy/lcgrJs5OdPUHMnjGmrW3CS6dS4l7o+
zmS6BbIdAADoq67roYUZRObszs3rXZbppkm7lizpvomLTKfLcabtdJX9L1fb
E6NUxlmdP1ynYo5uGV9S2icNMm3yeRbMQ6efn678frrCTDcfH6Ws7dA8qw+H
q3a6oWma6RSyHQAA6BsnmS5e7Yc4/0t5pknGFFkdd1HNWWfURlXRXrE6P92k
pC+hvr1Nv3HJltH8vjz9OCwm7SlN2umi8XKs0KLtFbfTLZ5BpjNEprNj3Uyn
kO0AAEBfuMp0q/N6J3+obqfKrZNeT/oK5tv+ltPk1emDNttmfo70ZEM1M136
fRXP1ZfkMcPxKZN79Qo/zqo50Ml0XSPT2dFWplPIdgAAIHRbW1vx0dFRZ9tv
9X665N6hTL6Qdqj03Fy6bdS9ryh5raJt1ct0aqyYle2mslOSxeZz3C3mrWvA
KNPl+rtmMt18jBTpFztJj4dJpjNCprOj7UynkO0AAACKtZnpkv6a6XxRNAdc
Ue5Tf6+Vl3T50DzT5fLcbKfn7WWzOQFGqxOOz+aLbjCOZOnYh6ltr4ztMp+n
YTZ2pYzjom+XjDLz3pnPUTEcZDo76ma6hw8f1to+2Q4AAGBVeaabja0Yzeex
K8xi6WePo2XbWeE4K8krpjLXfPsb0WxswDXG/1P5Z7afVZlu9rr6tz1JclFh
hJrOc91ijmnTHRwv5hbQL6v7ndyPWDluJe10psh0dtTJdB9++GG8vb3d6HXI
dgAAADOl2Wah7P61gmdPxpo2Jd0Kqbm+1zLfz4o3NJ3octLsnr/qfZ96NN+b
jKmZfz+6+/ra8jd/8zfxW2+9FdQidf8/+7M/c74fISx3796N33jjjUbr3rx5
M37llVeMjiPJdJ///OfXOhbJdgAAAEB90ublOnewdLdInnvttdcarSuZ7uWX
XzY6jtrIdArZDgAAADAnmQ4oUrfvZVuZTiHbAQAA30j9SOo9gE/IdNBxnekU
sh0AAPAF4zrAR2Q66Ogy3cHBQbyzs7OyXL9+Pd7c3Mz9XZaTk5NW9ods10dy
77R+vCn9OMEIC98zgP4g08FHZDro6DKdtMlJTksvMvemzMGZ/bss5+fnre4X
2a5/kjlDNzZW56SRsYnVHDCM/dsLfM8A+oBMBx+FmOnabPuBni99L3XIdv0x
mz9nIz/P6GLumPL5dxAGvmcAfUCmg49CzHSUJTt8z3TKkLOdms8z9H5s2rp+
rOYRrZqrtC/K+ygulqhozlj/8T0D6APqofARmQ46oWQ6ZVjZbjrvx7Y636hk
vCjAOn91XX9Y7TeFfRTFdP55BPb9KnzPAPqAeih8RKaDTmiZThlCttPXjWMJ
BMHV+bXvR96L1PUL32h/9e37VfieAfQB9VD4iEwHnTqZTsZBMX2uLf3NdmG3
1RQpquuH2ubYhtJMFzC+ZwB9QD0UPiLTQadOpvNZ77JdD9s0VF1/dVntV2q+
sUk8Hi23F43CywrFmU6yfNh9E+t/z9PldymZrwffLYDwUQ+Fj8h00OlLplP6
ku3UvVZ9Gvc9l2GmTcfMmI0xssgI03GyndA+q+L2rFHw95vV/Z7l+VHyZJnv
4K/jN3vw3QIIn8zdJHM4AT4h00Gnb5lOCT3bacfPCFhhu5Rqj1yzT17yeQX2
YRW3Z4U/hki973mWz8syW4jfLQAAXSDTQaevmU4JNdsNJtOlxvXP1esvckBk
NL5/dS7wUWE7XfK3HmY6zfe8mmuL3neY3y0AAOuQcQnfeuut3CLXy6K/y/N9
Raazo++ZTgkt2w2i76Wi2nBW6vSz/nqqD16yrq4tL5nLOrwc1Pf76cy+59mx
rj3OA/1uAQBYh9TNpd6azW43b97M/U2e53Nd/uDgID47O3O9G703lEynhJLt
VL24T5muLKeqx6SPXfJoti6vrdvLPVhhzmHd13Eva33PcVmmC/e7BQBgHVI3
N23bGlpdHsWGehx4n+1aus/MD8t+d4uxDLMV9ek41c9SsptJO51sNwo2E/Vv
from37Mu04X93QIAsA4yHeoa+nHgb7Zb1o/7U+evZ7roqyfZdpRrr5mMGs6D
4ImyTFfa17RnijJd6N8tgPAdHh7SXwzOkOlQF8fBjJfZbtGmEcXjVP12GPM3
S7+7kvcneW8lDMkcZ2F9HtpxcObj9w9jrMeCMVB68N0CCB/jOsAlMh3q4jhY
5V22y8y/rOZvjqTdqtftGPl+fMv5zdR8ZyZjYvqo6L0VLAPIdOlxL2dvN/Tv
FkBfkOngEpkOdXEcFPMu2w2NzGOQyTTSH28IOQcA4B6ZDnnlv8m2+Xt7nzLd
9vZ2fHJy4no3es+v4yD/G31+nHe7czOT7dzI308m/e/6NQ4oAMBfZDroFN47
MZV7Rtqbh6pPmY6yZId/x0HF2CCLXGd3ziqynW2TZNzDlf6mqfHvAQDoEvVQ
6GjHOFuMg7B+HZVMh7r8Ow5UptPNSzV/3NH9NWQ7AAD6j3oodPTjVqt2h/Xn
ViXToS7/jgO/M51Ctqsmx1XlOCAdLfTb7t6HH34YX7161cn3u7Oz4/rtA+g5
6qHQqc50tNOlUZbs8O84CCPTKWQ7Pal3u8hWdc6DaE6+WxfZSrLk5z//eeuv
C2BYqIdCR5vp1Ly6LYznRqZDXf4dB2FlOsXHbHd8fBw///zzSVl65pln4rfe
esvq6w8l0z18+DD+9re/HV+6dClZ5L/lb31HpgPQZ9RDoVOU6dqeO5hMh7r8
Ow7CzHSKL9nuZz/7Wa5f3BNPPBFfv37d2j4MIdNJvnj22WdzfQMlQ5+dnVnZ
B1fIdAD6bGtrKz46OnK9G/BQem7V9Fhuo6J5DBbjphg8N4VMh7r8Ow7WzHRS
djzIey6znWSJT37yk4X3IUmu+/u//3sr+zGETCffr+6eL2kj7TMyHQBgiHLt
dNOKsVGkT+aibjqNJ8n65eOokOlQl3/HQfNMt/jdxINMp6Sz3T/90z8l9eAm
i+RC0+dKH0vpA6jLGp/61KeMt/WrX/2q8T5/9atfdZLpvv/978d3795ttM/v
vfde/P777xs999e//nX8+OOPaz/nK1eu1PreXC3vvvtuo/UODg6stvsqkuk+
/elPN36/IXwn2eXf/u3frH/OAIBihffTqXvpiuqgK5ku+UOSActuuyPToS7/
joNmmW46HsVjacfOlRv3pA4p7QovvPBC0q7RZPnyl79s/NybN2+Wjhn4sY99
rNbrfv3rX2+0z9L/UPKRbTdu3Ii3t7cb7bNk75deesnouX/6p3+a5Dbd5yx9
X//kT/6k8XduY4miKP7KV77S+LP64he/aP37lUx3+fJlK2XJl+XJJ5+MP/jg
A+ufNQAgr3iMlOX8yrk5xwee6WT/+n4/ig98PA4mo7JMN2/f1hUEjzKdZDmp
90o7nbTX2XzdsqzxyiuvWNkPqYtKG4NtNvtefvzjH9d+zpubm/GjR4+s7IcL
8t3Kd2zbEPteyvuV9w0AcK9y3MvsXAaFfS/L5zvoU6aDHT4eB6qs5H7nmD2Y
3Gta+JjwINO5ynJp0ifusccey+WMp59+2tqYjEPIdL/85S8L52iT+xZ//vOf
W9kHV8h09pDpAMAfs7aH4rqoekzaHqbLP67WE6KLPFdRUSXToS4/j4PUvabp
g17uQa0a89JhpvMhyynn5+fxd7/73SRvSD81+f/nnnvO6n4NIdOJt99+Oxn7
UtpGn3rqqeSzlnFH+45MZ0+dTCdlnPwHrO/w8JD+YshY9q9USy7XrYxzOW+L
a1A3JdOhLn+Pg4tyM4oy479e/Dv9u0cRB5nOpyyXdXp6Gn/nO99J7muz3Q9w
KJlOSB36b//2b+Of/vSng6lPk+nsqZPpZIwk23NRAn3EuA5oDZkOFvTuOLCY
6XzOcmmu+m2pcTRsjychcwq5uA4PrS4tvxdIm6Tt71f6FZPp9IZ2HAJdIdOh
NWQ6WNC34yC5F6/jTBdKllNcZTp5TVdjv7sYm2SIdWnJdS6+36H1hyLTAfaR
6dCKdF/MsoEuM/qU6eS39uPjY9e70Xu+HwfGJqM4ivL9NNsUWpZTGF/BDurS
6EpZGZYxj9LtmPJcWdJ/szUuEtAnZDq41KdMR1myw/fjwAehZjmFTGcHmQ5d
qSrD6fbS27dvJ4v6tzwGoD7qoXCJTIe6fD8OXAo9yylkOjvIdOgKfS8B+6iH
wiUyHery/ThwoS9ZTiHT2UFdGl0h0wH2UQ+FS2Q61OX7cWBT37KcQqazg7o0
ulKnDMs5nWsnsD7qoXCJTIe6fD8ObOhrllPIdHaQ6dAVyjBgH/VQuESmQ12+
Hwdd6nuWU6gP2kGmQ1cow4B929vbST0BcEHq5vfu3cvN5fPee+/l/ibP87ku
T6azY4iZbihZTqE+aAeZDl2Qsitz+/zqV79yvSsAAEuOjo5W5qRRy6VLlwr/
Ls/3FZnOjiFluqFlOYVMZweZDm2QeVnv3LmT5Di5Dkr53dzcjH/v935vMf+m
nMPk3M28cwAwLHINCA2Zzo4hZLqhZjmFTGcHmQ7rkN9YpazeuHEjPjw8XMlr
2TIs5zQ5b8vf9/b24vPzcwd7DACwLcRMJ9c06qHd63OmG3qWU8h0dpDp0ISU
TTlP3bp1S1tOdWX40aNH8cHBQfI4v4ECQP+FmOlgRx8zHVluFZnODjId6jo9
PU3OVVXnqaoyLO10ch6XNjsAQH+R6aDTp0xHlitGprODTIc65L45ua/dpN+k
aRmWNru+nM8B1/b39+OzszPXuwGsINNBpw+ZjixXjkxnB5kOpuQ8df369aTv
pIk6ZVhyHe11wPoY1wE+ItNBJ+RMR5YzQ6azg0wHE1IWpX2uTpmsW4Yl00m2
A9AcmQ4+ItNBJ8RMR5arh0xnB5kOJuS8VXce47plWNr/ZJ16cx1M4tF8rgS1
jCZlj4/iiW5TQA+Q6eCjEDOd1NnlfgN0K6RMR5ZrhkxnB5kOVeS8JeewupqU
4Wbn9mk8jorynKJyHXkO/Uemg49CzHSUJTtCyHRkufWQ6ewg06FKkzY60bQM
119PZbooHk9LHo/GceHDQI9QD4WPyHTQ8TnTkeXaQaazg0yHMtIf8urVq8bj
oqQ1LcP37t1Lxu4zR6YDFOqh8BGZDjq6TCf3129k7q0oW9q8H58s1y4ynR1k
OpQ5OjpK5hVvomkZPjk5ScZjMUemAxTqofARmQ46PrXTkeW6Qaazg0yHMnfu
3IkPDw8brbtOGd7c3KzRNkimAxTqofARmQ46PmQ6sly3yHR2kOlQpum9dGKd
Mlxv3YaZbjqOR9Gy30Y0Wn18OhnH0eLxKB6lNz4ZacbZnG032ijbH6A71EPh
IzKd/+R3VOkn03R5//33G6139+7d+I//+I+dvGeynB1kOjvIdCgjc4yfnp42
WnedMix9L+Vcb6ZBppvnrtFkmvp3av0ks138e/54ku8k96VeYDqOLjJfFG9k
Qt1kFCVZMCLQwYEbN27UKDuAHU888YTrXahtaJlO5ojd3t5Orr91lxdffDH+
3d/93Ubrymv+0R/9kdX3Spazi0xnB5kOZey1ta3qOtNNRhuFWWy2/uz52Uwm
GS49H4L8ezSWrJeeI2ESjy5eZzwi0wGAQjud/6T/o4v3a7PvJVnODTKdHWQ6
lKmXrVatU4blnGt+vq2b6Wbz1RXPZVfyuGq7WzTtRUluW8l/F8+R/56Q6QBg
gUznvz5nOrKcW2Q6O8h0KCNjXsrYl02sU4a3trbihw8fGj8/aXfTZrr5nOMq
pGX7WWbpHs/8XWW6JOsleVHy3azNjkwHAEtlmU6uE+fn5xb3xoyMD1bnOhS6
PmY6spwfyHR2kOlQpv5ccUtNy7Bc22VOvDpm/SI1OWqauReu7UyXZEa5924c
j5LcWNx3EwCGqizTUQ/xQ58yHVnOL2Q6OziXooyMjyLjpDTRtAw3mxNv3haX
GtckMZ3MxrZcGfOyou/lYvyU7EsU972cPTQfGzNZh0wHAGlkOv/1IdOR5fxE
prODcymq1O0HqTQtw837e15kKRlzcmM5P4HkrOgiaE2zz4uqx0jJPp60Baay
YTrTLftfLtcn08EFmVOy6Vi1QFfIdP4LOdOR5fxGprODcymqyPjGBwcHtddr
UoYlO8p65vONNzPrq5lq0yvoV5l/fLXtbiXTrW6dTAdnhjauA8KQznTSv17q
3moseznny6L+LY/5eH+d/+b9VbJzsRoKMdOR5cJAprODTIcqkq+kPNZtq2tS
hpvmxyam41GqTS/KzzmeeXyU7tO5mHM8f9+durePOcfhApkOPsq206XnnL59
+3aypP+G+ta99oSU6chyYSHT2UGmgwnJWZK36qhbhuW5Mvdo1210QJ+R6eCj
EPteyn0HTcd9tm/WP2Q0GunHC6sQQqYjy4WJTGeHr+dS+EfOoXI+NVWnDEs/
GxmL5ezsrOHeARBkOvgoxEwXVFlK7g+QuXSa97/0OdOR5cJGprPD13Mp/CPt
Z3XmIDctw7JdOU8fHx+vt4MAwqqHYjDKMp30A7HV576OkMpS0u9yfsN3+Xyt
ej5mOrJcP5Dp7CDToQ5pT5NcZ9IfxaQMyz160j5HngPaEVI9FMNRlul8FU5Z
Wp2fp3S+1hI+ZTqyXL+Q6ewg06EuaVeT+Qbk/rqyscmqyrDkQjlnc74G2hNO
PRRDQqbrUDJml/S7nJuP05ydj6eKD5mOLNdPZDo7yHRoSvrKSDmV46doTExd
GVZZTnJhk3nvAOgFUw/FoJDpuiN9LVfb5OZzrKZzngGXmU7qBGS5/iLT2UGm
wzqknU6OHxkfTM7H8t/yO5vcc6fGDJP/3t/fTzLc5uZm8v+cs4FuhFIPRX/J
+f3evXtJP/2NxXwwy0X+Lo/7fh0IoiypNjnNUqepzlWmOz09pV7Qc2Q6O8h0
aIucj+VYUnPJSn6Te+XU9VvyHfMUAN2SuhHze8EF+T1P6m7y+578jpc+DtPt
dOp3PnmePL/OeMo2hZDpknvnisa4VHOo1gh1rjId+o9MZweZDl2hDANA/8kc
NKrfnO6cr+t7Kc+X9WR93+ay8T/TzfpYFo+FMp/ToEb/SzIdukJ90A4yHbpC
GQaAfpM2N+mPUdVvrup+OllftuNTG7P0NfE64yT9LvVzFszmNDDvf0mmU/ch
Fi9RNIrHk/pzuYP6oC1kOnSFMgwA/SX96W/cuFE6/rFiMkaKbEe258vcNpJv
TN6bGyp/VGc60/6XZLqZwiw8ncSjed6rO0cEqA/aQqZDVyjDANBP0p4m+cv0
HmnTcS9le7Jdn9rr/KP6VabakFZyRv7xwnvuMsh0M2p+v1wUXoxHU288UVAf
tIVMh65QhgHAsnm9s8u2BDmvy/1vddqw6sxlINuV7XP9sItMN6PNdIusrG8b
RTHqg3aQ6dAVyjBgH+NeDtusPpppR5hO48l4FEcr9wpF8Wg8qWy7KSJ5q+64
83Xnp5Pty+vAHjLdTHWmo52uLuqDdpDp0JWyMqzmtStb/L2PAfCX/2P1oTvz
Ome6MqrGtI8u6qGLAJcaC6LOBGbxbL4CGaeyriZzjsvr+DrPQR+R6Wa0ma7B
/BCYIdPZQaZDV8rKsNwzIfMT6fKcPMZcdkB9ZLoBm9c5V6qcyd8K+oo1vDeo
qo1O2oiLHm+S6Vy31T18+NDZa7tAppspynTTyby8GNyXiDwynR1kOnSFMgzY
R6YbrmS8PuM6Z/1+ZDJ/3Pb2duFjkuW2trbinZ2dJIfJOCfpTNQk0wl5PVfz
1sn7kbE9h4JMN6My3eoSXWQ8XcmaxuNRlB+LRn43IQMmqA/aQaZDVyjDgH1k
Os8s2sOyfbbSYxO2cH9O3bFRpvXbHXT1BekfKVkuneFkPgKZb05dA5pmOpd1
lKGVJTLdTK6dblo+Noo8P0qeLPMdzMrTIheS6RLUB+0g06ErlGHAvqHVQ4Og
8lP+Bp3WxlyY1SHNx+OrOx+1KJo77vT0NMlzRX3lpe+kPCb3RjfNdPJ68rou
DK0skelmCu+nW9yXms1os3tT07+lTMfzucllHTJdgvqgHWQ6dIUyDNg3tHpo
GArGLkmosUrWzXTz7ZgGtMV9d/Vqm9lzurTLST/LsvvO1JgqTTOdvJ68rgtD
K0tkupniMVKW4wqt5rd0P81MOSbTLVAftINMh65QhgH7hlYPDYNhpkv301zM
FT3/zb908wVjo+isMX/d5ubmSnuczJthcr+ZZIWmmU5eT17XhaGVJTLdTOW4
l5nsJm3eheWJTLdAfdAOMh26QhkG7BtaPTQM5u10SX1yeSNPPNHOlZXa+siw
rW/N+cjTuUzO7Xt7e0brqb6XpuNItjW+yrqGVpbIdDOqX3JROVGPSRmdpv5G
pitHfdAOV5lOxsiS75jzR3995jOfif/7v//b9W4AgzK0emgYmma6+dqlmW22
7cqctmaeE9l2ujrkuDS5L+7g4GAlK9JOZw+ZLjVv44Ym1620pc/KJJmuGpnO
DleZTs4bcn6XcwjZzh+StavmAjddrl69Gr/xxhutbEuu8wCqSX84KcfwyTzT
acZXqMp02jnmYtOxUQxzX4V16mVSB67KDDJngdyfl86N3E9nD5muGTJdNTKd
HS4znZw/hHzPZDs/yDhlbWW61157rbVtcVwACJcu0+XHvSzMdEnbQFFum2fC
inqjft66SbK+6dAqReNempJ8JFlNxsGUsTKzpH+m5LlsvY9xL+0h0zWRH/dy
8YiUZTJdgkxnhw+ZTiHbAQD6aDl3wLyGJ3NeRaOLZY1MN+8HVprJFuM66Bbz
+Q+y/SLrUPfEqeyWvsZLxpO57OQ3xSx5PVf9NKTP55DqImS6+tLjXi7K4UWZ
i6LVMhbVmTSkh8h0dviU6RSyHQCgXybz/Da/TycZYyF9/84sW9Xpe2kyNspi
TIcWMt06/SDT45xIrpNrvPTPl+1JnpN+l0Vc1gWljVD2dSjIdOgKmc4OHzOd
QrYDAAyJdowUXb9Ny7//S/4q6jtZpWjsSslLZfU81X4HO8h06AqZzg6fM51C
tgMADIHxXAYl46Z0qWnOajIfQdP8iGbIdOgKmc6OEDKdQrYDgHKMexmwgjnH
I5lzvOHYKF3Z3d2N79+/X2uduplOti+vA3vIdOgKmc6OkDKdQrZzR66xMm5Z
Fwu/xwLrG9pYfYPUwlxz65D5wKUNrU4drU6mk+3K9k3nKEc7hpbppO9vl3Wa
smV/f9/127eKTGdHiJlOIdvZJ+OSSRtAF0vTuWwBLJHpYIOMaSK5y3QMEdNM
J9srGzPFJh/2waahZTqpd8gYrF3VaXTL0dGRszkXXSHT2RFyplPIdgAwQ6aD
LVI/NW2vM8l0qn2uaE4DF2RcTql/D8Hh4WH8B3/wB/HNmzcH857l+JU2M9vW
GT82VGQ6O/qQ6RSyHYChI9PBJmnLkraOqvvrqjKdrC/b8altbAhlSdpFt7e3
48cff3xxD+dTTz0Vf/3rX+993xkynT1kOjv6lOkUsh2AoRpCPRR+UfclSRub
zOlWRJfp5Pmynqzv21xwQyhL3/3ud+PHHnssN2+hzLf++uuvu969TpHp7CHT
2RFKpmuS/8h2AIZmCPVQ+EnGubpx40a8tbUV37lzJ2l7k3qzZDU5LuX/5d/y
d3lcnifP93V8rL6XJRmDJt0+l10uXbrU67Y6Mp09ZDo7Qsl0Tea2Uch2AIai
7/VQ+E+ygtyfpcYUlPvS5LiU/5d/y9/lcd/Htex7WZJMo76bouXKlSvxiy++
qH28D4uLbCV1UsnLTff58uXLzj+3uoscZ761w/eRnK9cfcdyP64pef66yHbd
qjqWXPweBgyNlDXOb/BNG9dw2/pelqra6T72sY/1uh5OOx3QDpvtdFlkOwB9
1fd6KMJEpvPTt771rcL76eRvP/jBD1zvXqfIdEA7XGY6hWwHoG/knObr/UkY
LjKdn4rGvZT/fumll3p9L50g0wHt0GU6dQ91dpHzTFfzVJPtAADoDpnOb3J/
47PPPhv/9m//dvLfQ0CmA9qhy3Tydylj2UXdj5VddOMmN0G2AwCgfSFmOhnP
f0h1Aan/DOn9SqaTORGL2gu6XGROdzId+sSHvpc6ZDsAANoTYqZ78OBBr8cI
yRpappMxYmQujaL2gq6X/f19128faI3PmU4h2wEAsL70NVzumZA6rZpLKbvI
Y32/l8tHQ8t0ANoRQqZTyHYAADSXvoZL25cuz6llSO1jviDTAWgipEynkO0A
+O7WrVvJPRuAT3y4hqMcmQ5AEyFmOoVsB8BXQxqrD+Hw6RqOYmQ6AE3UzXRy
r7JvyHYAfEOmg49CzHRS7xjSfX1kOgBN1M10PiPbAfAFmQ4+CjHTyVwGMu78
UJDpADTRp0ynkO0AuEamg49CzHRDK0tkOgBN9DHTKWQ7AK4MrR6KMJDp/Eem
A9BEnzOdQrYDYNvQ6qEhkLmNDw8PF/Mbb29vJ/361PzDe3t7vR+r9MqVK653
oba+liWpm1y9ejV5fyaL1GGYWwKAzhAynUK2A2BLX+uhITo+Po6vX78eb21t
xXfu3En+Ldnt7OwsGXtD/luWg4ODJNtJPVvyXR/rz7TT+UOOOTneTEndReox
AFBkSJlOIdsB6Fpf66EhkfESpc4s7XKnp6fG60mWk3wn14j9/f0O99A+Mp0/
yHQA2jTETKeQ7QB0pa/10FDcv38/qS+v05dSst29e/eS+eP7MpY+mc4fZDoA
bRpyplPIdgDaJn386rQNoT3Sxra7u1vZd1Iel3vqpC9mGRlHX+redfpivvXW
W17Wv8l0/iDTAWgTmW6JbAcAYZP8Je1qpmTcFOmbKRm8rC1O1b9N2+vWbSPs
CpnOH2Q6AG0i0+WR7QAgPNIuWid3panxMMva4urkRTJde2TMmj7OOU6mA9Am
Mp0e2Q4A7EuPRVm0SNta0Tpyri56zJT0wazKhDIepvTtrEKma49ci7u9n3Ea
jyP9HAJRNIrHk2nrr0qmA9Am/zLdJB5lzqejSdnjo3ii21RLyHZD598xacN0
Mo5HUbZuE8Wj8SRuu3Zj87XgP3X/mm6RcUuyJGdJ3lqX3Acni45kRrkWZDOG
jLFZNrfYtWvX1t63NoSY6WyZjArO79PJ4twUjds9G5HpALTJv0wnlr+ZjQor
x6oObbfuTLYbMj+PyW5M53Wbi0yV/m16Ubdp8z3afC30VRttdIpsQ+axK2PS
Vkc7XXim46j4HD8dx1EH53cyHYA2+Z3porj4Z7H549HYyW/4ZLtqav5e+Xzk
9+vw+X1Mlpvtm+lvzNp6zezBi7pNe/Uam69lm9yb5WOdvo/avI6ZZDq5Bsj5
vwyZLjz685H6zU53/m+GTAegTWS65sh2eTJGgdSH5Dolv2XL5yN9jq5fv97K
b+juhHFMFquT6eZ1Fyvvw+Zr2dfXsfp8JOOWtDWGRlXfS0XmQDg7O9M+7lum
k7FfZByYmzdvJv9fZ16GoajOdLTTAfAXmW59Pmc72R+pn+zv73d+LZB2OV12
k6wndSDjNrtFX5eLZeUCm753zWYbTljH5KoamW4yKvjMO2LrtRwdS2Q6ezY3
N1sZQ8NkjBRF7umT86qOZExffseS8+6zzz4bP/7448lxKf8v/w6lD4Xsp40M
qs10HZ2ryHQA2kSma49P2U72RTLU5cuXk2vRpUuXkvGgf/GLX3TyepLZJM+Z
7JNx3UvVxfMX2Nq/maprtfmSPfbCPCZnzDOdGiOg7bEAXL9Wm8eSKTKdHSZ9
JU2YzGWQfb7Maec7eT+S34rOc/L3ENrrJLPbmMugKNPJ+E1RR/0JyHQA2kSm
a58P2U6yU9E1XHKd5K8uXq+sH5Iiv2sXjVlXbF7fzt+wPj8+aKczUz/Ttftz
9Hy8k2j1+7L5Wi6OJTKdHdKGs86YkqZzjmfdv38/3t3dbfy6trz55pvJb3pF
1wP5uzzuO1tlqfi3v8z4TfU3Gkea6wKZDkCbepPpppN4PEqdj3N1OvtcZTup
a1y5csXamNp1fic3ac9b6kGmm66O0R+NVh9PfgOOUnWH9MZVf5/ScdhM7tm3
lOl0dRfNvjZ6rUw5z36e+s+lxrGU7quZOp/UnZ9qaJlOzjv12sKHvZSdo9tc
XnjhhdLHzc/H7tgqS7l2uul6Y6MsMiKZDoAF/ch0s38vfkubn4et9OkyoPoc
ShuZjeu//OZc9rjqh9lmveHLX/6y0Wchv4NLPxozgWe6eTZYHpfy79T6SWaL
FllB9fFJH7dSJ5B52rKfwWQUJVkwe4yv28dU3x8yOwff6nrldZfydjrz18qW
83FBOW+nnS55P8uKXTwpG59Tw1Y91BemY4u0rd7vRDPS31Cue7I07Xso997J
udZ3P/7xj0vPAfK475xlOqF+W6vZB2M6nv8OJOuT6QBY0I9Mlyf1RR8ynfx2
Le1i0kfHpG9iG+Q7VffRFS3PP/98q68n70syq4l6/aTay3Qu7qdLMktBFkvn
k+JMtnxf8u/RODumv+SWcTw2PsbN2+nU51T83OLPwKTu0tZrZRV9xppnrpHp
Uq9V45gj09lhMq9A9vlSj173u/Hz2pknmfeZZ54pPM89/fTTQYyT4jTTpeYm
zZ2rLs55+Tb9zDmQTAfAEl+vS2oe4uL6nK5+JuQ39Yvz7MVjLhNdOsvZvmaq
vpBF1/Ann3wy/vnPf976a0q7n8nv3fWON91Y98X95UbpPowdNODVOyZn/9bv
h+Zx1Xa3aIqKknrESiaTesR4WuN3iwbjXmrqIKW5pmamW+u1Em3M0WCe6bLf
TRUynT3yWZuQ35+kTa+Nc7LL91vXz372s1zfjC7HzGqb20wXp/rBZ35bS/XD
SNYtOpeR6RpY5uiiJWrQFx4YAl8zXelv+NN8H7X0Orn7kixymeXS/vVf/zX+
5Cc/uXIelP6bL7/8cievZzIGnPS7lM/GvL1SVw/PjlW42idP2o266JdZ65jM
9rMsfH7B45m/q0y3rBfIe529t04yXepaWpRHW81067xWsnqdOclNjyW16YJM
V/WdZpDp7DGZC07OP23lOdPX9Im018n5V64L8jl0MVZWV2yVpbKxeNVjG+r3
4uz5R3c+ItM1VnjP9XSy+P3Wh75YgE98zXTLula0+nuMKs8ldUd1X5KNKbYU
X7JcmmSnb37zm0nbnOzb22+/3enryXvXzdckbXgyL7DMYVfH8pyeulfyItOM
0m0ruWtpVRtZUzWOybYzXfLa8rrjeJS8sfo5zfj6lx5nJPU+F2N6t5bp1nit
pP9pvXELjI6lxW6tn+mkLNjqb+0Dl5lOzit7e3ulz5Gx8OUc1AY5n0k7V4jM
72f2R/eZLt8ulDtfroydJOcL2um6pm03nVZdH4Bh8jfTiWkyxt1qf/XIqF9l
YZ2sAz5muSy5183GdUB+B5d5CuQaJfVZuV7J5yP1PNmHZtfkSWbcyMm8rSp1
39v/l71mqna71t5aiukxWZErp5rfHTR9L2cPpfuVdpjpklUy48jO+7tM5jmo
tUzX6LXk/TTpX2twLKU+93X7Xg6Ny0wn/c2lvls2F0G9eVTKmWRIX5n2U/WJ
r23e09TYxMnYuMWdyMl0DWkzXfr3Vc7HwILfma65rjNdCFlOsX0dkOuUynby
+Ug9T+pcnZlk+1p2melMzbNCxRgp2cezv/WmM91q3aDjTNdE00xX+2XWnC/K
gHaMFC/nH/SD6/vLJGOV9QNYdx47RXKjnFM7Pad1KMRMJ22iNuYcr2c2VpXR
78tkukaqMx3tdEBaPzKd6peW6lPVUd/LkLKc0v/rwOrcFdNcxnNjdj1KH5f5
fpX5x1eP25VMt7p1OzmthrK6S2vku129uSIeZ+eoa0EbcxkMjetMZ9JWJ781
6fqHmwq5jU6EmOn8vH4VjeOxOldNFOX7c6SR6cpVjlnDCRlY0Y9MN6vHr8zd
3PLv+CFmOWUQ14H0vQ66PjAOyHgt0co1PTPneObxleN20a8n378kPR6Q8/dq
UHdp6YUy89Zpxg5fV8Gc45FHx5SvXGc6UTVWk+Q9uaeuaa5T42Y2ndPOByFm
Oi9NRrnznPQhqJMzyHTlijLd4l5r+kwAOX3JdF0JOcspQ7sOALDPh0wnJNNJ
tisj7XUyX3id/pOS4+RaEPq5lEzXjny/hGmNOUNnyHTliueVLfvNfrq8Nzs7
ZhkZEANApivWhyynDO06APhAyp2cR4bCl0wnbXFy3q7KdcfHx8nYTfL/VdQ8
5aFfCwSZri2TZKymuuO3pZHpyuXa6ablY6Mk9yokT17e67jIhWQ6DACZblWf
spwytOsA4ANfx+rrii+ZTkiuk/Y6ue+t7P46aXurmm9C5nFrc14718h0/iDT
lSu8n07dk5DLaPl7zOXehuR+dUvjdwGukelm+pjllKFdBwAfkOnck/FM5PxX
1WZXRM6Zcj2QPBfqGJdFQsx00pYa8j2MOmS6csVjpCzHplnNb+k208wYaWQ6
DMTQM12fs5wytOsA4AMynR8kj0mb3dbWVvL/ZX0t5Twp+U/q2X3tOxtippN5
0vtYlsh05SrHvcxkt4nufkYyHQZiqJluCFlOGdp1APDB0DLdj370o2TxlWQ7
yWsyNor6PV/q0yq/yb/l/yX3SV27ryQfhaavZUn69crce+o4VMsLL7wQv/TS
S7m/y3fXpzbjKsmcoBvFOU09tpG6h5FMh6EbWqYbUpZTyHSAfX2th+q8+eab
yRISyW6yDOn8GGI7XZ/LkuQ6dRyqRX53uHv3bu7vQ6mzFM39l8tqK3POzNrr
yHQYuqFkuiFmOYVMB9jX53poEV/7XmIVmc5/Uicb0vttC5kOQ9f3TDfkLKeQ
6QD7hlYPJdOFgUznPzJdE/lxLxeP5OYSBPqpr5mOLLdEpgPsG1o9lEwXhrJM
J8erj8fs0MoSma6+9LiXizFVJqM4ilbnK49yA64A/dG3TEeWyyPTAfYNrR5K
pgtDWabz9TscWlki0wFooi+ZjiynR6YD7JMxFqvms+4TX/MAVpHp/EemA9BE
6JmOLFeNTAega77mAazKZrr0uIu3b99OFvVvecwHZDoAqBZqpiPLmSPTAega
mS4M6Ux3fn6ejJufnqdPFvVveUye45rM4XZ0dOR6N6wh0wFoIrRMR5arj0wH
oGtkujCE2PdySH2YxRAz3cHBweL4s7lIezTQF6FkOrJcc2Q6AF3zNQ9gVYiZ
bmiGlukkV0k9xXae29vbS14X6AvfMx1Zbn1kOgBdc5oHpuM4UuOVr4xVPolH
i3HMRzGjmJPpfCdtkl/72tfiH/7wh4O5bkumk76+tsnnS6ZDn+gyneQnl+3X
ZLn2kOkA+7a2tgZ1D5DzPKByXW7+KZXryHSiLNPJdYJrhTuvv/56/NRTT8WX
Ll2KNzc3k/sIf/azn7nerc6R6YB2+JbpyHLtI9MB9g1trD7nmU5lt1ymm8bj
iEynlGU6uCNl5/HHH0/Njz1bJOO9/fbbrnevU2Q6oB2+9L0ky3WHTAfYR6az
rWamm47jUbSsO0ej8cUzZTOjxd/ym1J9PKN4PO3yvXQnxEwncyr4MP5mV+S9
PfHEE7k8p5aPf/zjrnexU2Q6oB2uMx1ZrntkOsC+vma6R48eJedrNd59ehz8
L3zhC7m/y3Nlne7VyHTzbDaaTFP/Xua06TiKoyjKbWsykr9f5L+AAt3Dhw/j
w8PDJG/fu3cvOS7l/+XfcnzK476Tfoh9LEuKZFbpZ6nLdFeuXIlffvnlXNny
aZHy8pWvfKXRulIHfOGFF6x/7h988EHSNtr0PX/5y192/rnXXaS+b+d8PGyS
Z5p+Ry+99FJSJpqsu729HX/jG9+w/n7JcvaQ6QD7+prp5Fwi9wqqeanV8t57
78Xvv/9+7u/yXDvnH/NMNxnlnyd5LZ3pRmPJeem2vYvtR+N4PPI/00mdTXLc
9evXk8//zp07SYbb399Pjkv5f/m31O/kcXmePN/Xul5fy5IidSDJbbpMJ7nj
3//933Nly7fl3XffbbSezGMgmdA2OS996lOfavx+pR7r+jOvu9g7Hw+bOr82
+Y7kOirX0ybr3r17N/7e975n7X2S5ewj0wH29bUeWre/kr3zzzzTRfM+lAvZ
TDd7Xi76pdeQdrrxbL1FfpuMkv+eeJ7p5JiT32olx0n7T1ZR30t5njxf1vNx
XJ++lqW0559/XpvppM7UZ1IXlTYG24bY95L6oB2u7kWw1feSLOcOZRiwr6/1
0PAyXWbcy0w/yyIq0yX31iXbk3w3W9/XTCdtbLdu3Uqu52Wfd9W4l2obPrXZ
9bUspckcBs8880wuzz333HO9v36T6eyhPmhHXzMdWc49yjBgX1/rof5munmf
ypX75KS/5Gg+FkqDTJfkwYvnTsbxKGnYy7TdeULG2JA6sUkbm8kYKXLc3rhx
w5txSfpalrLk3sZvf/vbyVwGssh/h3C/47rIdPZQH7Sjb5mOLOcPyjBgX1/r
oT5nutk9b+mxLCfzNjb1N8ly5n0vky2OZuvNnu9fppP2NLkfrqifZRHTcS+l
ni3b9aG9rq9lSWdvb8/LPrBdIdPZQ33Qjr5kOrKcfyjDgH19rYf6nelMzDNe
xRgp6fvolv05/ct0cq2V666pOnMZyHZl+671tSzpSJ1sSO9X+p3K2Ka6+wm7
XHw4vm3y73zcT6FnOrKcvyjDgH0yjqDUVepLtyvllygaxeOJu0wRfqabZbak
za5sLoPC3OZXppM5CWQMyzrqzk8n25fXcYlMB7TDx/NxH4Wa6chy/qMMA+FZ
3huW+uN02bfQVa7oQ6YT0/FoPn/4rG9lfs7x/D13syzox5zjcp+VfLZ1+0bW
zXSyfXkdl/d1kemAdvh6Pu6b0DIdWS4clGEgPCo/5KdbG8+zSHruNHv6kulC
J/dcybxeddXNdEJeR17PFZlTa0j3l5Hp0BXOx3aEkunIcuGhDAPh0Wa6xdj8
btqKyHTuyXiUknN0bXRSl5C55mTciePj45XHmmQ6eR15PVfjYA5h7Mc0Mh26
wvnYDt8zHVkuXJRhIDzVmY52uqGSNiuZRy5LMpeMVSl1CbmXU8YTlDkJ0nWL
JplOyOsNqa3MJTIdusL52A5fMx1ZLnyUYSA82kyn7vcqG4y/Q2Q694rylbSl
Sbuc5LisdP2iaabT5Ui0j0yHrnA+tsO3TEeW6w/KMGDfuvcAFWW66WR+L91i
bH37yHTuybU5e12umtNA5cCmmU5eT14X3SPToSucj+3wJdOR5fqHMgzYt+5Y
fcsxFtOLzH1dkeam48y829nxHMvGXam+R49M5578XpC+x8zkHgppx5N77Jpm
Onk9eV10j0yHrnA+tsN1piPL9RdlGLCvrUy3yF9Tg7FR5tlsVDbvWhQVzrcd
Gc67RqZzS7KZzM+syGcr126T8UukX2bdOcfT222aB9cl5cjV+CwukOnQFc7H
drjMdHKeJsv1F2UYsK/1TCdUW5um72Uyp11BXktnutFYcl56fBWZ824cj0dk
ulCks5VkvDrjQsq6h4eHlc+TMVYkK6bH1nSV6ZifDmgH52M7XGU6OV/LuRv9
RRkG7Osk010kubF2zvFZO17Z0ClJO914to3F+hc5Uf57QqYLxjqfqRw70gez
bH2pF8j4menfeet+720i0wHt4Hxsh6tMh/6jDAP2dZPp4tR9cZm5DDL9LHXb
THKbbCNp65N8N9sOmS4ckrdOT08brSvHjqwrY2Tq5rcrms9c1pHXdYFMB7SD
87EdZDp0hTIM2LduPTTpR1nYHrd8TPpZLh6tk+mSNr2L507G8SgJjZm2uxJk
Ovfu3Llj1H+yiOo/KffKydx12fvU7t27l2S6LHk9eV0XyHRAOzgf20GmQ1co
w4B9zeuhy/6Vi7Ers1lrMU5lur3OvO9l8uyRGkdz+ZpkujDIWCfSztZE+p44
mdtA+mFK3UMym2xTMl0R3dx3NpDpgHZwPraDTIeuUIYB++zXQ+dZsGKMlPR9
dMuxVsh0rZvnbpPPtC7pMymfa52xUZTsOCeyDal7SBucLrPJc+T1dH01u0am
A9ox2POxZWQ6dIUyDNjnoh46uwdP+lSWzGVQmDHIdG2bfRfZex6n8WQ8SuaN
WJlzcDypPYe83O9W1EeySpOxK4vur7PJ90y36AtduMg8IRfHQY0vmEyHrgz1
fGwbmQ5doQwD9kmdzEW5m0pmSNcnc3OO5++5W85vzpzj7ZjPJZhuM13MQ5Gu
36f62ZZ1mi3QtK2ubqZz3UYnfM90QuW67Di105Jyp0OmQ1eGeT62j0yHrlCG
AbSFTGdgXo/Pzy1YUK9f3BuZadMzIPfD3bp1q9Y6dTOdbF9ex6UQMp12nNq4
fLyjImQ6dGWQ52MHyHToCmUYQFvIdNWSOrxmXviCZ8/a9BpkOrG/v68d16RI
nUwn25Xtu7a1tZWM0+mzskynHiPTwbUhno9dINOhK5RhAG0JNtOlxwpdbUCb
Z6rmuarodYzHRlH7ZZwB8yQDmN7vZprpJMvJdmFGn+lU/1r6XsI9b87HPUem
Q1cowwDaEmymEyo/5SdyX6utbPUlolr19+L7sOqTcUxM5o+rynRy35xkijpt
f9Blumky7uxszhDzxE6mQ1e8Oh/3GJkOXaEMA/Zl53Lui6AzXdHYJQnVlrJu
piueT0K/O+q+u3bmO5A55uTzLrv/rSzTqfnqyBP1LccZyo97Oa75/ZLp0BW/
zsf9RaZDVyjDgH1yD5DrsSW6MIhMtzKn+8ZivMrKunnR2Cg6Hc1fJ5+1jGsi
2Uz6T56dna08ns108rg8T54v6/nzXYVF206nsl6NvrVkOnTFr/Nxf5Hp0BXK
MGBfCGP1NSHnkqtXry6uWWp57bXX4jfeeCP3d3muP+cf83a6pI6+eN6ybl6W
12b9KA3a+jqcj1yRrCb9JyWrybKzsxPfuHEjeQ/y//JvuTbIY/K8bPZDPX0Y
91LKaR/PWViiPmgHmQ5doQwD9vU10wkZjyOb3b7xjW8kS/bvLueqzmua6eZr
l2a22bYr6+0W8lyW5LWTk5P4+Pg4OS7l/+XfoVwXpE9p3Xn4bCvLdIu5CQ37
5LrKdPKa0r9A6gx9PXcNHfVBO8h06AplGLCvz5muSBjXsHmmy/WDM8t02jnm
YtOxUQxzX4fqzk/ngxDKUl8ynby21Bfk/8l2/UN90I4wrocIEWUYsC+Eemib
wriG6TJdftzLwkyXtLEV5bZ5Jqy4Z0o/b90kWX/dsS9NkOm60Ye+lyrTKWS7
/qE+aEcY10OEiDIM2BdCPbRNoVzDlnMHzOvX04s8F40uljUy3bw/ZWkmU201
2sV8/oN1kOm6UTwnRXqMFPMxVX3JdArZrj+oD9oRyvUQ4aEMA/aFUA9tUzjX
sMk8v83bTi4q4dNF38tltqrT99JkbBRV5yfT1ed7WSr9bqMoHo0nteaT9y3T
KWS78FEftCOc6yFCQxkG7PO9Htq2vl3DtGOk6Ppt2ug42QIynf98zXQK2S5c
1Aft6Nv1EP6gDAP2Da0e2rdrmPFcBiXjpviITOc/3zOdQrYLD/VBO/p2PYQ/
KMOAfZubm4Oq5/TqGlYw53gkc443HBvFJ+lMJ/MDyHGq6zcoj/kwhwCZzo66
mU4h24WD+qAdvboewiuUYcA+mf/r/Pzc9W5YM8hrmIO55tZFO53/Qst0CtnO
f9QH7Rjk9RBWUIYBdI1rWBjIdP4LNdMpZDt/UR+0g+shukIZBtA1rmFhCDHT
bW1txcfHx653w5rQM51CtvMP9UE7uB6iK5RhAF3jGhaGEDPd0PQl0ylkO39Q
H7SD6yG6QhkG0DWuYWEg0/mvb5lOIdu5R33QDq6H6AplGLDv7OwsfvTokevd
sIZrWBjIdP7ra6ZTyHbuUB+0g+shukIZBuy7evXqoOorXMPCQKbzn+Sd3d3d
RZmqs7zxxhvJ0mTdmzdvxi+//LK190m2s4/6oB1cD9EVyjBg39DG6uMaFgYy
nf8ePHjQKJOFlukUsp091Aft4HqIrlCGAfvIdPBRiJnu8PCQa5gFtvpe6pDt
ukd90A6uh+gKZRiwj0wHH4WY6YZWllxxnekUsl133NcHp/E42kjKdNESRaN4
PJk63L92cD0cxvfsgvsyDAzP0OqhXMPCQKaDji7T3b9/P97Z2TFe5PltINu1
z5f64GQ0q9uPJqk/TifxaJ4DonHY9X2uhzN9/55d8KUMA0MytHoo17AwkOmg
o8t05+fn8cnJifEiz28T2a49vtQHp+MoX9efPRBHSVvOKM4+FBKuhzN9/55d
8KUMA0MytHoo17AwkOmg40vfSx2y3fp8qQ9q6/oXNfxRUteP4pCbcLgezvT9
e3bBlzIMDMnQ6qFcw8JApoOO75lOGUq2U/3W8kvU+H4kX+qD1XX9sNtvzK+H
5fedqSX/OYWh79+zC76UYWBIhlYPJdOFgUwHnVAynTKEbFd0P9J0OonHo1ld
eSMax3WSnS/1QW1dfzKava9QQ8xc3eth4X1nsXxOo35mup58zy74UoaBIdnc
3OxtPaMImS4MZDrohJbplD5nO307R6odr0a92Jf6YNH7mk7m91jVzKk+aivT
qXa8UKNP379nF3wpw8CQyLzBbY8V4DMyXRjIdNAJNdMpfcx2ZZmuyT1JvtQH
1fvK9ikdNRnfPt1uKWMpjtxnhfYyXdjqf8/T1TZoD79b13wpwwD6i0wXBjId
dELPdEqfsl15pltmAdMx4X2pD+be17TpmBmqHWuqNpxsx/UY+WS6mbrfszw/
Sp4s8x38dfymh9+ta76UYQD9RaYLQ4iZbnt7OxkjH93qS6ZT+pDtqjLdoh3E
MAz4Uh8sfF/qHqs1++Ql+chxOGol08nnEXj/xHrf8yyfl2U2H75b13wpwwD6
i0wXhhAzHezoW6ZTQs52VZmu7lgTvtQHi9/XcgzIXL3+4n1G2T58hXmnOhfY
sH6mm87+1sdMp/meV/tpFo2H6cd365ovZRhAf5HpwkCmg05fM50SYrYbVqaL
l+9npU4/66+n+uAl6+qyTjKXtfvx8ZtmutzSy0wXa77n2eegzWyefLeu+VKG
gSFhjBS4JMef+k7Si1xHi/7ONQJ9z3RKSNmur30vy+4DTI/nmTyarctr6/Zy
D5Yfc1jTTjdT63uOyzKdP9+ta76UYWBImMsALkmddXd3N5fdvve97+X+Js8b
Ql0e5YaS6ZQQsp3pGCmmtxi5rw/m59jO1eGn41Q/S8luJu10st3ImzFGuJ+u
yfesy3R+fbeuuS/DwPAMbaw+Mp1fpK5qevwNrS6PYkM9DnzOdmZzGZj3Rwu1
Pjhd9NWTtqtRrr1mMmo4D0JHGPeymaJM59t361qoZRgIGZkOLvUp08lxdXZ2
5no3es/346BrPma7skynHqszZkSY9UHpd1fSXiV5b+UDkjnO3LZvkemaKBgD
xcPv1rUwyzAQNjIdXOpTphtaWXLF9+PAFp+yXWFdPzUPc1QzBIRZH8z341vO
b6baKv0aW4RMV1963MvZ5+Dnd+tamGUYCNvQ6qFkOr+Q6VCX78eBba6znX4s
RJmXeRxPpvVrtkHWB2Ueg0zYkf54Ps9TZn49LMirHr8vuBdkGQYCN7R6KJnO
L2Q61OX7ceCK62zXphDrg/kxUaT/nd/zlHE9RFdCLMNA6IZWD+UaVqWo/1Bq
TDC577/F+8DJdKjLr+Mg3+9qtfki+3j381b1IduFWR+cJOMepvtdRqnx733E
9RBdCbMMA2EbWj2Ua5gZ3f0xo0g/j08TZDrU5d9xsPwdpK1xH9sQcrajPmgH
10N0hTIM2De0eijXMDPacewWc/W0Uz8l06Eu/44Dlel0cw3PH3c0ZkKI2Y76
oB1cD9EVyjBgH3OOo4h+bHLV5qCrv9ZDpkNd/h0Hfmc6JaRs56o+KJ+Prt95
18vJyYn19zu066HMNSN1Hhff787Ojuu3bxWZDrDvwYMH8fn5uevdsGZo17Cm
qjMd7XRZZDo7/DsOwsh0SgjZ7vr16/HDhw+tv67Uu11kqzrnwTYdHBwky1DI
d+siW0mZk/I2JGQ6AF0j05nRZjqZW7XFcazJdKjLv+MgrEyn+Jjt3n777fiZ
Z55JytKlS5fi119/PX706JG11x9KppP2KsnNqg3p2rVryd/6jkxnD5kOQNfI
dGaKMt10Mr+XrsW6aZ8y3e7urpP64ND4dxyEmekUX7LdX/3VX8VPPfXUSn81
6Sf3ta99zVquG0Kmk+z27LPP5voG/tZv/VbSb6fPyHT2kOkAdI1MZ0ZlutUl
ush4ulrpcsz2lSY81a6nqe/2KdPBDv+Og4aZbjqJx6NlOZP5uYd6v51kiaef
frrwPqQnnnjC2jl7CJlue3tbe8/Xpz/9aSv74AqZzh4yHYCukenM5NrppgZj
oyzy2+q9drItXVdNMh3q8u84aJLpZn9b/EYyHSfly4f5qdPZ7t69e4tzZt2l
zrp//ud/nvS11GUN2Zf9/X2jbd29e7fxPn/xi190kuleeeWV+ObNm432Wd6v
6Xv+x3/8x/jy5cvaz/nKlSvxP/zDPzT+/Gwtf/mXf9lovdu3b8cvvvii9e9X
ypT0KW76ftcph66Wq1evkukAyxgjBUUK76dTmU3Xh+zi8Wg8Tuqq6bopmQ5t
8u84aKfvZTInZEv3qa5LPmPJUd/4xjca1+mkL7LpcyXPlI0ZKP0CTbcl+ejN
N99stM/ynt977z3rn/eNGzcaZ7rXXnstWUyeK1lIcpvuc5Z6+N7eXqP9sLVI
fv3e977XaF3JdF/60pesf78ffPBB/IlPfKLxe65TlnxZ5DcYm/fCAmAuAxQr
HiNlObdyYXuCZD5ZIcl+y/otmQ5t8vE4SPKYNtPN27hL89o091uICyrLyedr
8zf24+PjJE8U5YzHHnss/sEPfmBlP4bQ9zJ7z2J6efLJJ3tdD6fvJYA+G9pY
fWQ6M5XjXhbNZaAyXbza5kCmQ5t8PA5UeSnMZNPZ2EKleS15TjvzgzThKsul
fetb3yrsf/ncc89Zm9dgCJlO8nNRrpP2u1/+8pdW9sEVMh2APiPTocis3aG4
Hqoek8w2XX1g2RYxr8fKP4eS6e7cuTOI8cBd8/M4SN1vmh5HSO5Drex3Kc8p
uU+1Qz5kOUXah7773e8m93tJm50sMp6Hzf0aQqYTkt2kTU59zrL0Pc8JMh2A
PiPTYdWyf+ViPL5sZXOe13LtdelMF8/bLi7qspOBZLqhlSVX/D0Opsk4ltFK
+8fFv7O/fWTXifTloys+Zbks2R+pe5+enlp/7aFkOiEZWt6rLEO5p55MB6DP
hlYPJdN1KJPpVNtFVFJnJdOhLt+Pgzomo7L5Qdrnc5bzgYxVIvNvS73f5rK1
tRUfHR25fvu9J78TSJuk7e9X5neXNmcA6NLQ6qFkug7lMl28uP+OTIe2+H4c
GMuVF2nn62aOOrKcGblvT7Vd2V5gh+Q6F98v5Q5A14ZWDyXTdWU55/hqX001
D1fxWmQ61OX7cWBmWV5Wlor5DuoiywEAMAxDq4eS6fxCpkNdvh8HPiDLAQAw
LEOrh5Lp/EKmQ12+HwcukeUAABgm5hyHS2S6AulxRQvGnNHODzgQvh8HLpDl
AAAYtgcPHgxmHGNBpvMLmU5D5br8pO/zXEemA1kOAAAME5nOL2Q6nXl2y2U6
NX8gmW7IyHIAAGDIyHR+6VOmk31rb0xy80yXzO1ue9Jqh3w/DrpElgMAACDT
+Ubqpvfu3cvN5fPuu+/m/ibPG05dnkynM8RMR5YDAABYItP55ejoKN7Z2ckt
H/nIRwr/fnx87HqXLaHvpc6QMh1ZDgAAmGCMFPhI7k0btnmmy81Bncl0k1HB
+Jj9NoRMR5YDAAB1MJcBfESm02W6/LiX9L3sD7IcAABoYmjzJJPpwkCmkya4
2Vx0o8k81U0v8lw0uljKMl16DrviJRpPi14uGH3MdGQ5AACwDjIdfBRiprt1
61bSl7k9k3l+m2exi9w2XfS9lCWKJZ7RThcushwAAGgDmQ4+CjHTuSpLZDq9
R48exYeHhx3vUX1kOQAA0CYyHXxEpjNHptOTvCTZyRdkOQAA0AUyHXxEpjOk
xr3swX1ypkLMdGQ5AADQJTIdfESmg05ImY4sBwAAbBhaPZRMFwYyHXRCyHRk
OQAAYNPQ6qFkujCQ6aDjc6YjywEAABeuXr06qHoomS4MZDro6DKdlOuyefmy
y8nJSav7RJYDAACunJ2dJeN9DwWZLgxkOuj41E5HlgMAALCPTBcGMh10fMh0
ZDkAAAB3yHRhUH3jQlr+8A//MP7FL37hfD9CWN5///1kabLu3bt34+9///tG
x1HbmY4sBwAA4B6ZLgwvvvhivLOzw9LT5atf/WqyNFl3e3s7yc8m2sp0ZDkA
AAB/kOmAsNnse0mWAwAAIZC+TOfn5653wxoyHRC2OplOxn86Ojpq9BpkOQAA
EIrNzc1BjetApgPCVifTNdk2WQ4AAIRmaGP1kemAsHWR6chyAAAgZGQ6oB17
e3vxgwcPXO9G77WZ6chyAACgD8h0QDuGVpZcaSPTkeUAAECfDK0eSqZDV4ZW
llxZJ9OR5QAAQB8NrR5KpkNXhlaWXGmS6chyAACgz4ZWDyXToStDK0uu1Ml0
ZDkAADAEQ6uHkunQlaGVJVdMMh1ZDgAADMnQ6qFkOnRlaGXJlbJMR5YDAABD
tLW1FR8dHbneDWvIdOgKmc6OokxHlgMAAEN2fn7uehesItOhK2Q6O9KZjiwH
AACQd3p6Gp+cnFQuDx8+LFzfZF1ZdFnSdP0ijx49qlzv9u3b8Q9/+MPG66tF
nrvO51e0vnwm67z/ddeX79RkXXmP66x/dnZWuL7UyU3W19XdTdfXzQtu+vnp
1ifT2SGf8bVr18hyAAAAGlevXk3qplXLwcFBbl3JKabrF/X3lEywublptP7x
8XFufanbma5fVC+Xv5msK0tRrpGsYrp+0evLNk3WlfdYVI+9f/++8fpFmVy+
E5P15TsuyqRyTJisL/19i+zv7xutL/X5Int7e0brb29vF65/7969tV7/1q1b
2ryH9kg5IcsBAAAMF30vAQAAACBcZDoAAAAACBeZDgAAAADCRaYDAAAAgHCR
6QAAAAAgXGQ6IHzTyTgeRVE8nrrek36bjkfxRjSKJ9OGH/R0HEcbG3HEFwWs
omwAwFqaZrpZHXJ1TPvook45Gk9izsjog8bH+HRiMV9N47HsY5Izsg9N48lF
BolW3kOdMjrftmYOi+jiNce5F7XN/j6q4yIaTeqvO44u9uviu3K07/CTH9dT
t8fjatlwvz8AEJr6me6injia1w3T59OkHruROScDIWp6jEuGihbZqftMp/Lc
OF/vm4xm+7GS9VJ1pBp5ZPZZbMQrqyw+Cz9+V7e/jxfbrvk56tYJ4fNFV/y7
nro5HvXlifIBAGbqZrrpvM5aWJVJ+k6Q6RC2Rsf4vI4hvx1HljJd/nftlCTT
FezDvH9Tnbqi9vNosC1zs/xpWl9zso/z3Gwc6zTPd/P5wgc+Xk99K0uUDwAw
Uy/TzX9LK2oXAHqhyTEu+WO0yE/qd/duM12TdqLUem1kusW2univLWU6C/to
eqwkx0XBc93sO9zz83rq4njUlQ1X+wMAIaqV6VR/rgb3kQBBaOEYt5HpZvWc
Bq+hftuuUY+srlN53E7X6T7W+B5Kxn9wte9wzNPrqfXjsWJsFMoHAJipk+lU
v3b6r6Ov2jjGqzLddHHPnemS39bsNerXZQrvTamgrVN1WidtKdN1XW82HKuv
LPs523c41cX1tI1zi+3jsep3EcoHAJhpkuk4haKv2jjGu2+na9hna3HPStFa
8zEHonxOLKpTyTh9ddv76lk/03W/j8KkD+y8j6bmOe72HS75ej21ezyWlw37
+wMA4SLTAUtBZbp6jW3l7UmL8Qb0v9tnf98vzobJGvF4NF8nXeeS1zCugzXL
dOb7aLRRg/01yNcVY6m423e41OhcM50sy5aU51H73/Ha5b3OPhqMM9Rq+bDw
+QGAK+30vVT92vX9OYAQtHGMd57pVP4yrQwa9Q+s0U43LR+bQJ4/m7tNtjmr
My3qZSVjhLTaX6xiH6uU7W/mmfP5IfT9YKv6ybrbd7hU/1wzO9YWWeaiXI86
uBdivfL+1/GbNfbRpA95e+XDzucHAK7UyXTq3Fp8DlR1G/IcwtXGMd75/XR1
Mp3h/V7lmyi4n2Ux/102N+Tb16bj+dzAsk7H7XRm+1i1rTr7W5XpJpX1Rnf7
DpdaO9ekDpzO7qerUd6r9jH1iFGmarN8mO8bAISn0biXmvNo03EbAG+0cIz7
0/fSrM5UpXiMguX85av5LV2nzHxOtjOdZh/VvkTZ+m1234z2t7zvpcm4mO72
HU6tfa6pV0ZMtVbeK/bRdMzYTspHxb4BQIjqzU+3PI8WVSfJdAjf+se4L2Ok
6Od8msz7IJm9WuW4c5nPQ163sJ5kPdPp9nH2+ak+WMm6RftVJ9MVTxptNH+d
u32HW2ueazqak7y18l66j+ZzO3ZSPkr3DQDCVC/TxatjKaTuUV6MQ8U5EqFb
6xgvr6e1pbK+t6jvmPe5Kn+t4nqbekwyzTT1N9uZrtY+Zutyurqdyf6W9W2d
P1Z1HDjbd7jX+Fwj965187tRa+W9bB8Ny0bt/TEtHx1+fgDgSu1MJzJjRyXn
WxlbQe5dLhhjAQhOzWNc7mOKouLx2aIOyoR+Ht6ZRV1nrUy3zKeLzyB/802q
n9PsfdrNdE32sb22rrLvwbTvnKt9hydqX0/luIk6+M2ozfJevo9mfXq6Kh9d
fX4A4FajTAfAsQbzGVjiop2urmm6HfOi3lzczFC1v2X9x7r7ftrZd4RqMlpz
nouWFZX38n3s9txVVT58+/wAoC1kOiBMpmMM2FUxJoIXOWM5x0KZyv0tm1sr
eayL76alfUeY5LhaOeBkbjiX33NBea/ax87KRrLx8vLh3ecHAO0h0wGhMh9n
wJb0OHiLqpOMQ7fSh0rNZ+VsL3N9ulbqmEb7u/7YKO72HWHKzltXNqajHfny
XrWPXZ+zysqHf58fALSJTAeETNWR5P4b1/sSCMk9mZwj/bFM+4Kp8Su0WamF
OQG11tx3wKkuy4agfAAYMDIdEL7pZDZGy5iqS6V8v0Tpf2VWz5SxcGb52U2A
Xmffgb6jfAAYoocPH8a3bt2Kr169Gl++fDn5b/kbAPTbJBn3Lts/MYxaX8j7
DnSN8gFgWM7OzpIc99GPfnRx7nvsscfiJ554Ij45OXG9ewAAAACAEr/+9a9X
8pxa5G9PP/10/OjRI9e7CAAAAABB+Z//+Z+kjaxq0fWPlL+brH9+fh7v7e2V
zkd8//59y+8eAAAAAML2qU99qjRnqeX69euF6+/u7hqtL88re+7jjz8e7+/v
W373AAAAABC2nZ0da+NP3rt3T5vpPve5zzFWCgAAAADUZDPTSWaT8S6L7qf7
zGc+w/10AAAAAFCTzUwn/uVf/iXpZ5ke91LGwmTcSwAAAACoz3amk7Y4mZPu
E5/4RPzkk08yPx0AAAAArMF2plPkNV28LgAAAAD0CZkOAAAAAMJFpgMAAACA
cJHpAAAAACBcZDoAAAAACNfp6amTcSfJdAAAAAAQLjIdAAAAAISLTAcAAAAA
4SLTAQAAAEA9jx49ik9OTioXeV7XyHQAAAAAUM/u7m68sbFRuWxtbSX/3+XY
KWQ6hO6dd95JFh0pb+fn5/Z2CAAAAL0n9UuTdjoZC1My3YcfftjZvpDpELqq
Y/jzn/98p2UIAAAA0JHsJ211tNMBemQ6AAAADBmZDqEj0wEAAGDIyHQIHZkO
AAAAtvk0XgOZDqEj0wEAAMCmw8PDeHt72/VuLJDpEDoyHQAAAGySuqfUMX1B
pkPoyHQAAACwqU6mkznH79y50+nc42Q6hI5MBwAAAJvqZDqphzI/HVCOTAcA
AACbyHRAu8h0AAAAsKmLTHdychLv7Ow0WmRfvvCFLzReX14bcIlMBwAAAJu6
yHQyN4JkqybLe++9F7///vuN1/dpXgYME5kOAAAANvnW9xIIHZkOAAAANpHp
gHaR6QAAAGDT/v4+mQ7B2N3dTY7BJsuVK1car1t3uX37tvY9XL582co+PPbY
Y2utf//+fXtfLAAAABqTfGZadyPTwbUQ2rj60E7H+LMAAAD9RKaDa33IQ314
DwAAAAiTjCm5vb1dObbko0ePGo9bue6CfutDHurDewAAAEC/HR0dNZ5f7otf
/GKyMD8divQhD/XhPQAAAAA61CVRpg95qA/vAQAAAH6RvpK+oC6JMn3IQ314
DwAAAPDH4eFh0mfRF9QlUaYPeagP7wEAAAD+qDPnuA3UJVGmD3moD+8BAAAA
/qiT6aSP5q1btyrHvVx3f6hLQqcPeagP7wEAAAD+qJPpbMxPR10SZfqQh/rw
HgAAAOAPMh1C0oc81If3AAAAAH+Q6RCSPuShPrwHAAAA+INMh5D0IQ/14T0A
AADAH2Q6hKQPeagP7wEAAAD+2N/fT3La9vZ24eN7e3vJ4+mFTAdXQshDBwcH
SbnSuXbtWvzw4UOLe1Qf5RAAACAcMi/ByclJ/ODBg8LHpf4sj6eXLlGXRJkQ
Mp2QeT+aPOYLyiEAAACaoi6JMqFkutBRDgEAANAUdUmUIdPZQTkEAABAU9Ql
UYZMZwflEAAAIHwyhoPca2cbdUmUIdPZQTkEAAAI340bN5zU6ahLogyZzg7K
IQAAQPh2dnbIdPAOmc4OyiEAAED4yHTwEZnODsohAABA+Mh08JGrTHf//v3F
sVk0v9zZ2dni8aqlaH2ZH1L3/NPTUxtvcQXlEAAAIHxkOvjIVaa7detWfP36
9eQ+Uxk/KEtyl5SZqkXWLxp76OTkpPD5V69epRwCAACgEReZ7vDwMH7xxRfj
a9euJf8NpElb2Xe+85347bfftj4m6/b2dvzOO+9YfU3hohxKm+NPfvKT+Ec/
+lHy3wAAAAiTzbqktHv8/u//fryxsRH/xm/8RrJ89KMfTf7GvVOQY0Ay1ZUr
V5Jj5PLly/Gzzz6b9Fe0RdoHh5DpXn/99fipp56KL126lCzy3/I3AAAAhMdm
XfI///M/48ceeyypr6cX+ZvkOgyb5LnssSHL008/XdgPsguuMp3NOUV+/vOf
J3k5+zk/8cQT8U9/+lMr+wAAAID22Mx08jpFdXa1yL1GGCbJUUU5Qy2vvPKK
lf1wlemk76ON3Crjtmxubmo/Z8l1tvu7AgAAYD1Shy3LWWqRdoQir776qtH6
d+7ciXd3d7WPf/zjH4/39/ctv3v44sc//nHp8fP8888nfTNlLJGqY+0jH/mI
0TFZdLy5ynQ6urbLJouUYenHqvq2Fi3y+boYfxMAAADN/dd//Vf87rvvJm1k
ZYvuniZpX6haVxZ53t7enrYu+dxzzzFOw4AdHBzEH/vYx7THxze/+c3keZI3
qo61f/7nf47fe++9yucV3cPpW6Yzeb9HR0fJYlKGpQ2u7HOW++oohwAAANCR
+qmuLvmbv/mb9PkasLI2uE984hPxL3/5Syv74Vum64LM1aArh9IuCAAAAJT5
u7/7u2ScvWxdkjkNILktm+ukn6DMGWfLEDKd3Lf32c9+NjdekbSVM/4sAAAA
qkhbnIxPr+qRzzzzTHx8fOx6t+AJactV7Uif+9znkjnqbOr7GCmKlMMf/OAH
8eOPP570xfz2t79t9fUBAAAQPhkz/Y033nC9G/CUZCsXbUa6OcflXjST+0Z1
+1x1X5zkWNtzjgt5TRevCwAAgPBRl0QZV5lOjSNStD+m47sW2draajQOZ9co
hwAAAGiKuiTKuMp0Q0M5BAAAQFPUJVGGTGcH5RAAAABNUZdEGTKdHZRDAAAA
NEVdEmXIdHZQDgEAANAUdUmUIdPZQTkEAABAU9QlUYZMZwflEAAAAE1Rl0QZ
Mp0dlEMAAAA0RV0SZch0dlAOAQAA0BR1SZQh09lBOQQAABi2R48exScnJ9rl
/fff1z52+/btZKmzjm75j//4D9cfBQpIJmt6fGxtbcVHR0etHB8ffPCB64+i
daenp7U/hzrlsMki+wQAAICwHB8fxzs7O4XLiy++GH/yk5/UPv6lL30pvnbt
2srfoiiKn3rqqfjrX/+6dr3sIs+V1/n1r3/t+uNAxt7envZ7e+655+Lt7e3S
x7PHwQsvvBB/9rOfNT42ZJFj7Hd+53dcfxStevjwYa3PoOrzkbLY1vZk3wAA
ABA+qdddv369Vt85afOTOmHd3/rv3LkTHx4e1txDuCTtb7du3aq1jhwXcnzI
cWJKjj/JLOfn53V3EQAAABisptlM6vhS16/j4OAgaQtCOJpmM/mNoE4bkOQ4
Wefs7KzJbgIAAACDZSubSb/PGzdu1FoHbjXJZpL9ZJ0HDx7Ueq3d3d34/v37
dXcRAAAAGLT9/f343r17tdZpks2k7UXq+fSpC4fNbCbHoByLAAAAAMxJvVvq
33U0yWbyXLlHinHuw2IrmzW5Vw8AAAAYOml7kWxW5x6pJtlMti9tejJuOsJh
K5s1uVevj6R8qHnn2l4oewAAAP3TdIzLJtmMMS7DY3OMy7r36vWVtId2lem4
RxEAAKBfbM4/wBiX4bGVzZreqwcAAAAMHWNcQocxLgEAAAC/McYldBjjEgAA
APAbY1yiDGNcAgAAAP5ijEuUYYxLAAAAwF+SyaQebSObvfrqq/E777xTax24
Jd+XfG91MMalXfL7irSjymdetMhj9HMGAADoL6l3N6lHN+k7SX/L8DT5ziQ/
1M0QTY9DzMjvK2ULAAAA6vv/ARswvOo=
"], {{0, 444}, {885, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{463.625, Automatic},
ImageSizeRaw->{885, 444},
PlotRange->{{0, 885}, {0, 444}}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uC", "-", "uA"}], "Rf1u"], "+",
FractionBox[
RowBox[{"uB", "-", "uA"}], "Rg1"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"KCL", " ", "@", " ", "A"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uD", "-", "uB"}], "Rf1l"], "+",
FractionBox[
RowBox[{"uA", "-", "uB"}], "Rg1"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"KCL", " ", "@", " ", "B"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uE", "-", "uC"}], "Rg2u"], "+",
FractionBox[
RowBox[{"uA", "-", "uC"}], "Rf1u"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"KCL", " ", "@", " ", "C"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uF", "-", "uD"}], "Rg2l"], "+",
FractionBox[
RowBox[{"uB", "-", "uD"}], "Rf1l"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"KCL", " ", "@", " ", "D"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uC", "-", "uE"}], "Rg2u"], "+",
FractionBox[
RowBox[{"0", "-", "uE"}], "Rf2u"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"KCL", " ", "@", " ", "E"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uD", "-", "uF"}], "Rg2l"], "+",
FractionBox[
RowBox[{"uo", "-", "uF"}], "Rf2l"]}], "\[Equal]", "0"}]}],
RowBox[{"(*", " ",
RowBox[{"KCL", " ", "@", " ", "F"}], " ", "*)"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ClearAll", "[",
RowBox[{
"uCM", ",", "uDif", ",", "uA", ",", "uB", ",", "uC", ",", "uD", ",", "uE",
",", "uF", ",", "uCOM", ",", "uo"}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{"sol", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"uA", "\[Equal]",
RowBox[{"uCM", "+",
FractionBox["uDif", "2"]}]}], ",", "\[IndentingNewLine]",
RowBox[{"uB", "\[Equal]",
RowBox[{"uCM", "-",
FractionBox["uDif", "2"]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uC", "-", "uA"}], "Rf1u"], "+",
FractionBox[
RowBox[{"uB", "-", "uA"}], "Rg1"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"KCL", " ", "@", " ", "A"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uD", "-", "uB"}], "Rf1l"], "+",
FractionBox[
RowBox[{"uA", "-", "uB"}], "Rg1"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"KCL", " ", "@", " ", "B"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uC", "-", "uE"}], "Rg2u"], "+",
FractionBox[
RowBox[{"0", "-", "uE"}], "Rf2u"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"KCL", " ", "@", " ", "E"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uD", "-", "uF"}], "Rg2l"], "+",
FractionBox[
RowBox[{"uo", "-", "uF"}], "Rf2l"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"KCL", " ", "@", " ", "F"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"uE", "\[Equal]", "uF"}]}], "\[IndentingNewLine]", "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
"uA", ",", "uB", ",", "uC", ",", "uD", ",", "uE", ",", "uF", ",", "uo"}],
"}"}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.750856228635037*^9, 3.750856262783235*^9}, {
3.7508563043363447`*^9, 3.7508565599887466`*^9}, {3.7508566150390882`*^9,
3.750856715386816*^9}, {3.750856856789884*^9, 3.750856867700409*^9}, {
3.750856978435944*^9, 3.7508570276178913`*^9}, {3.750857076748664*^9,
3.750857093246335*^9}, {3.7508571730271683`*^9, 3.750857230622939*^9}, {
3.7508572616211367`*^9, 3.7508572617606373`*^9}, {3.75085761932006*^9,
3.750857644393874*^9}, {3.750857821964245*^9, 3.750857882930043*^9}, {
3.750857930254579*^9, 3.750857937487658*^9}, {3.75085800174797*^9,
3.750858069006185*^9}, 3.7508581369906607`*^9, {3.750858259006936*^9,
3.750858278854641*^9}, {3.750858573926861*^9, 3.750858604163802*^9}, {
3.7508586824171667`*^9, 3.7508587134187*^9}, {3.750858754832602*^9,
3.750858902781217*^9}, {3.750858954760974*^9, 3.750858966600298*^9}, {
3.7508590041510973`*^9, 3.750859015150872*^9}, {3.75085906679793*^9,
3.750859103734476*^9}, {3.750859134904763*^9, 3.750859222476405*^9}, {
3.75085979923151*^9,
3.750859822312099*^9}},ExpressionUUID->"83e87b50-aa09-4c56-ac8a-\
0037efd4bb13"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"uA", "\[Rule]",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "uCM"}], "+", "uDif"}], ")"}]}]}], ",",
RowBox[{"uB", "\[Rule]",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "uCM"}], "-", "uDif"}], ")"}]}]}], ",",
RowBox[{"uC", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "Rg1", " ", "uCM"}], "-",
RowBox[{"2", " ", "Rf1u", " ", "uDif"}], "-",
RowBox[{"Rg1", " ", "uDif"}]}],
RowBox[{"2", " ", "Rg1"}]]}]}], ",",
RowBox[{"uD", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "Rg1", " ", "uCM"}], "+",
RowBox[{"2", " ", "Rf1l", " ", "uDif"}], "+",
RowBox[{"Rg1", " ", "uDif"}]}],
RowBox[{"2", " ", "Rg1"}]]}]}], ",",
RowBox[{"uE", "\[Rule]",
FractionBox[
RowBox[{"Rf2u", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "Rg1", " ", "uCM"}], "+",
RowBox[{"2", " ", "Rf1u", " ", "uDif"}], "+",
RowBox[{"Rg1", " ", "uDif"}]}], ")"}]}],
RowBox[{"2", " ", "Rg1", " ",
RowBox[{"(",
RowBox[{"Rf2u", "+", "Rg2u"}], ")"}]}]]}], ",",
RowBox[{"uF", "\[Rule]",
FractionBox[
RowBox[{"Rf2u", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "Rg1", " ", "uCM"}], "+",
RowBox[{"2", " ", "Rf1u", " ", "uDif"}], "+",
RowBox[{"Rg1", " ", "uDif"}]}], ")"}]}],
RowBox[{"2", " ", "Rg1", " ",
RowBox[{"(",
RowBox[{"Rf2u", "+", "Rg2u"}], ")"}]}]]}], ",",
RowBox[{"uo", "\[Rule]",
RowBox[{"-",
RowBox[{
FractionBox["1",
RowBox[{"2", " ", "Rg1", " ", "Rg2l", " ",
RowBox[{"(",
RowBox[{"Rf2u", "+", "Rg2u"}], ")"}]}]],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "Rf2u", " ", "Rg1", " ", "Rg2l", " ",
"uCM"}], "+",
RowBox[{"2", " ", "Rf2l", " ", "Rg1", " ", "Rg2u", " ", "uCM"}], "-",
RowBox[{"2", " ", "Rf1l", " ", "Rf2l", " ", "Rf2u", " ", "uDif"}],
"-",
RowBox[{"2", " ", "Rf1u", " ", "Rf2l", " ", "Rf2u", " ", "uDif"}],
"-",
RowBox[{"2", " ", "Rf2l", " ", "Rf2u", " ", "Rg1", " ", "uDif"}],
"-",
RowBox[{"2", " ", "Rf1u", " ", "Rf2u", " ", "Rg2l", " ", "uDif"}],
"-",
RowBox[{"Rf2u", " ", "Rg1", " ", "Rg2l", " ", "uDif"}], "-",
RowBox[{"2", " ", "Rf1l", " ", "Rf2l", " ", "Rg2u", " ", "uDif"}],
"-",
RowBox[{"Rf2l", " ", "Rg1", " ", "Rg2u", " ", "uDif"}]}],
")"}]}]}]}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{
3.750858069386104*^9, 3.750858137292919*^9, {3.750858264472508*^9,
3.750858279155402*^9}, {3.7508585793933697`*^9, 3.750858604455832*^9}, {
3.750858637510779*^9, 3.750858650099332*^9}, {3.750858694886044*^9,
3.7508587140757847`*^9}, {3.750858756467449*^9, 3.750858903223053*^9}, {
3.750858961814795*^9, 3.7508589675115623`*^9}, {3.750859005268873*^9,
3.75085901573106*^9}, {3.750859139873981*^9, 3.7508591524488163`*^9}, {
3.750859216072094*^9, 3.750859217202486*^9}, {3.750859807855031*^9,
3.750859822713161*^9}},ExpressionUUID->"bfb6128a-820c-412c-bbb3-\
9a90c44ccb62"]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{
3.7508578597143803`*^9},ExpressionUUID->"ac61f9ac-f8c6-4e2f-84aa-\
2d3303ae6fe4"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FullSimplify", "[",
RowBox[{"uo", "/.",
RowBox[{"sol", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.750858140283308*^9, 3.750858142177309*^9},
3.750858205438162*^9, {3.7508584351360807`*^9,
3.750858441030603*^9}},ExpressionUUID->"7be221a0-6820-4cf2-a941-\
fdafeb98dc65"],
Cell[BoxData[
RowBox[{"uCOM", "+",
FractionBox[
RowBox[{"Rf2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "Rf1"}], "+", "Rg1"}], ")"}], " ", "uDif"}],
RowBox[{"Rg1", " ", "Rg2"}]]}]], "Output",
CellChangeTimes->{3.7508582059221277`*^9, 3.750858441342619*^9,
3.750858722299425*^9},ExpressionUUID->"4b44ee12-6a79-42e8-bac7-\
2c1c946f4d25"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{"(",
RowBox[{"uC", "/.",
RowBox[{"sol", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "-",
RowBox[{"(",
RowBox[{"uD", "/.",
RowBox[{"sol", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7508582344129057`*^9, 3.750858272534492*^9}, {
3.7508583061496487`*^9,
3.750858340604789*^9}},ExpressionUUID->"abd2640f-b428-4c62-b92f-\
df57de4c3484"],
Cell[BoxData[
RowBox[{"uDif", "+",
FractionBox[
RowBox[{"2", " ", "Rf1", " ", "uDif"}], "Rg1"]}]], "Output",
CellChangeTimes->{
3.750858246669986*^9, {3.7508583190861683`*^9, 3.7508583412440434`*^9},
3.750858728840641*^9},ExpressionUUID->"8a328261-d7a6-41c3-b1d9-\
6dbd62aa05dc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uC", "-", "uE"}], "Rg2"], "+",
FractionBox[
RowBox[{"0", "-", "uE"}], "Rf2"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"KCL", " ", "@", " ", "E"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"uD", "-", "uF"}], "Rg2"], "+",
FractionBox[
RowBox[{"uo", "-", "uF"}], "Rf2"]}], "\[Equal]", "0"}], ",",
RowBox[{"(*", " ",
RowBox[{"KCL", " ", "@", " ", "F"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"uE", "\[Equal]", "uF"}]}], "\[IndentingNewLine]", "}"}], ",",
RowBox[{"{",
RowBox[{"uE", ",", "uF", ",", "uo"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7508584848507433`*^9, 3.750858512277248*^9}, {
3.7508585535170193`*^9,
3.7508585564209623`*^9}},ExpressionUUID->"376497c7-3bf3-4025-9dc9-\
b7a8a94671fc"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"uE", "\[Rule]",
FractionBox[
RowBox[{"Rf2", " ", "uC"}],
RowBox[{"Rf2", "+", "Rg2"}]]}], ",",
RowBox[{"uF", "\[Rule]",
FractionBox[
RowBox[{"Rf2", " ", "uC"}],
RowBox[{"Rf2", "+", "Rg2"}]]}], ",",
RowBox[{"uo", "\[Rule]",
FractionBox[
RowBox[{"Rf2", " ",
RowBox[{"(",
RowBox[{"uC", "-", "uD"}], ")"}]}], "Rg2"]}]}], "}"}],
"}"}]], "Output",
CellChangeTimes->{3.750858515216436*^9,
3.750858558987731*^9},ExpressionUUID->"5aed8869-1b28-446d-a8e5-\
a984e6a3d423"]
}, Open ]]
},
WindowSize->{808, 755},
WindowMargins->{{59, Automatic}, {-17, Automatic}},
FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \
10, 2017)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 39074, 696, 811, "Input",ExpressionUUID->"83e87b50-aa09-4c56-ac8a-0037efd4bb13"],
Cell[39657, 720, 3522, 91, 225, "Output",ExpressionUUID->"bfb6128a-820c-412c-bbb3-9a90c44ccb62"]
}, Open ]],
Cell[43194, 814, 130, 3, 30, "Input",ExpressionUUID->"ac61f9ac-f8c6-4e2f-84aa-2d3303ae6fe4"],
Cell[CellGroupData[{
Cell[43349, 821, 347, 8, 30, "Input",ExpressionUUID->"7be221a0-6820-4cf2-a941-fdafeb98dc65"],
Cell[43699, 831, 371, 10, 88, "Output",ExpressionUUID->"4b44ee12-6a79-42e8-bac7-2c1c946f4d25"]
}, Open ]],
Cell[CellGroupData[{
Cell[44107, 846, 489, 14, 30, "Input",ExpressionUUID->"abd2640f-b428-4c62-b92f-df57de4c3484"],
Cell[44599, 862, 293, 7, 54, "Output",ExpressionUUID->"8a328261-d7a6-41c3-b1d9-6dbd62aa05dc"]
}, Open ]],
Cell[CellGroupData[{
Cell[44929, 874, 1029, 27, 172, "Input",ExpressionUUID->"376497c7-3bf3-4025-9dc9-b7a8a94671fc"],
Cell[45961, 903, 614, 20, 54, "Output",ExpressionUUID->"5aed8869-1b28-446d-a8e5-a984e6a3d423"]
}, Open ]]
}
]
*)