-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtensor.py
214 lines (170 loc) · 5.44 KB
/
tensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import math
'''
A very, very basic & crude implementation of the tensor/matrix/vector
classes used by MADNESS. This to enable a standalone and pure Python
version of the 1d example code.
'''
class Vector:
def __init__(self,arg,wrap=0):
'''
If arg is an integer, make a new zero vector of length n.
Otherwise, arg must be a python sequence or another vector,
and a new (deep) copy is generated unless wrap is true in
which case the existing sequence is wrapped.
Inheritance from list does not work as desired so we have to wrap it.
'''
if isinstance(arg,int):
self.a = [0.0]*arg
else:
self.a = list(arg)
def normf(self):
sum = 0.0
for i in xrange(len(self.a)):
sum += self.a[i] * self.a[i]
return math.sqrt(sum)
def inner(self,other):
sum = 0.0
for i in xrange(len(self.a)):
sum += self.a[i] * other.a[i]
return sum
def gaxpy(self,alpha,other,beta):
'''
generalized saxpy (inplace) ... self = self*alpha + other*beta
'''
if not isinstance(other,Vector):
raise TypeError,"you're adding a vector to what???"
for i in xrange(len(self.a)):
self.a[i] = alpha*self.a[i] + beta*other.a[i]
return self
def scale(self,s):
for i in xrange(len(self.a)):
self.a[i] *= s
return self
def emul(self, other):
for i in xrange(len(self.a)):
self.a[i] *= other.a[i]
return self
def __getitem__(self,ind):
return self.a[ind]
def __setitem__(self,ind,value):
self.a[ind] = value
def __getslice__(self,lo,hi):
return Vector(self.a[lo:hi],wrap=1)
def __setslice__(self,lo,hi,value):
self.a[lo:hi] = value
def __str__(self):
return str(self.a)
def __len__(self):
return len(self.a)
def __add__(self,other):
r = Vector(self)
return r.gaxpy(1.0,other,1.0)
class Matrix:
def __init__(self,arg0,arg1=None,wrap=0):
'''
If arg0,arg1 is a pair of integers (n,m) make a zero n*m matrix.
If arg0 is another Matrix make a new (deep) copy unless wrap is
true, in which case just wrap the argument (i.e., data is
shared).
'''
if isinstance(arg0,Matrix):
if wrap:
self.a = arg.a
else:
n,m = arg.dims()
self.a = [0.0]*n
for i in xrange(n):
self.a[i] = Vector(m)
for j in xrange(m):
self.a[i][j] = arg.a[i][j]
elif isinstance(arg0,int) and isinstance(arg1,int):
n,m = arg0,arg1
self.a = [0.0]*n
for i in xrange(n):
self.a[i] = Vector(m)
else:
raise ValueError,"invalid argument to matrix constructor"
def dims(self):
return len(self.a),len(self.a[0])
def __getitem__(self,ind):
'''
ind is a pair of integers -> returns an element
'''
i,j = ind
return self.a[i][j]
def __setitem__(self,ind,value):
'''
ind is a pair of integers -> set the element
'''
i,j = ind
self.a[i][j] = value
def __str__(self):
'''
convert matrix to string for simple printing
'''
r = ''
n,m = self.dims()
for i in xrange(n):
for j in xrange(m):
r += ' %12.6f' % self.a[i][j]
r += '\n'
r += '\n'
return r
def __mul__(self,v):
'''
matrix * column vector multiplication returning a new vector
'''
if not isinstance(v,Vector):
raise TypeError,"matrix*vector expected a vector"
n,m = self.dims()
if m != len(v):
raise ValueError,"matrix and vector do not conform"
r = Vector(n)
for i in xrange(n):
for j in xrange(m):
r[i] += self.a[i][j] * v[j]
return r
def __rmul__(self,v):
'''
row vector * matrix returning a new vector
'''
if not isinstance(v,Vector):
raise TypeError,"matrix*vector expected a vector"
n,m = self.dims()
if n != len(v):
raise ValueError,"matrix and vector do not conform"
r = Vector(m)
for i in xrange(m):
for j in xrange(n):
r[i] += v[j] * self.a[j][i]
return r
if __name__ == "__main__":
# Test getting/setting elements of a matrix
a = Matrix(3,4)
for i in xrange(3):
for j in xrange(4):
a[i,j] = i*100 + j
print a
for i in xrange(3):
for j in xrange(4):
if a[i,j] != i*100 + j:
raise ValueError,"incorrect value at (%d,%d)" % (i,j)
v = Vector([1.1,2.02,3.003,4.004])
# Test matrix*vector and vector*matrix products
av = a*v
for i in xrange(3):
sum = 0.0
for j in xrange(4):
sum += a[i,j]*v[j]
if (sum-av[i]) != 0.0:
print sum,av[i]
raise ValueError,"incorrect av at %d" % i
v = Vector([1.1,2.02,3.003])
va = v*a
for i in xrange(4):
sum = 0.0
for j in xrange(3):
sum += v[j]*a[j,i]
if sum-va[i] != 0.0:
raise ValueError,"incorrect va at %d" % i
print "there is a remote chance all is OK"