-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutility.py
87 lines (67 loc) · 2.77 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import gc
import time
import pickle
import gpytorch
import numpy as np
def store_object(obj, obj_name):
with open(obj_name, "wb") as fp:
pickle.dump(obj, fp)
def load_object(obj_name):
with open(obj_name, "rb") as fp:
return pickle.load(fp)
def get_all_combinations(hpob_hdlr, n_trials):
# Total combinations -
# 430 combinations for HPO-B test dataset
# 456 combinations for the HPO-B validation dataset.
seed_list = ["test0", "test1", "test2", "test3", "test4"]
evaluation_list = []
for search_space in sorted(hpob_hdlr.get_search_spaces()):
for dataset in sorted(hpob_hdlr.get_datasets(search_space)):
for seed in seed_list:
evaluation_list += [(search_space, dataset, seed, n_trials)]
return evaluation_list
def get_input_dim(meta_data):
dataset_key = list(meta_data.keys())[0]
dim = np.array(meta_data[dataset_key]["X"]).shape[1]
return dim
def convert_meta_data_to_np_dictionary(meta_data):
temp_meta_data = {}
for k in meta_data.keys():
X = np.array(meta_data[k]["X"], dtype=np.float32)
y = np.array(meta_data[k]["y"], dtype=np.float32)
temp_meta_data[k] = {"X": X, "y": y}
return temp_meta_data
# Created as a stub for parallel evaluations.
def evaluation_worker(hpob_hdlr, method, args):
search_space, dataset, seed, n_trials = args
print(search_space, dataset, seed, n_trials)
res = []
try:
t_start = time.time()
res = hpob_hdlr.evaluate(method,
search_space_id=search_space,
dataset_id=dataset,
seed=seed,
n_trials=n_trials)
t_end = time.time()
print(search_space, dataset, seed, n_trials, "Completed in", t_end - t_start, "s")
# This exception needs to be ignored due to issues with Gaussian Processes fitting the HPO-B data.
except gpytorch.utils.errors.NotPSDError:
print("NotPSDError (Not Positive Semi Definite Error) encountered while evaluating. Not recording this as a valid evaluation combination.")
res = []
return (search_space, dataset, seed, n_trials), res
def evaluate_combinations(hpob_hdlr, method, keys_to_evaluate):
print("Evaluating for", method)
evaluation_list = []
for key in keys_to_evaluate:
search_space, dataset, seed, n_trials = key
evaluation_list += [(search_space, dataset, seed, n_trials)]
performance = []
run_i = 0
for eval_instance in evaluation_list:
result = evaluation_worker(hpob_hdlr, method, eval_instance)
performance.append(result)
run_i = run_i + 1
print("Completed Running", run_i, end="\n")
gc.collect()
return performance