-
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathstyle_loss.py
176 lines (129 loc) · 4.77 KB
/
style_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""
Content loss implementation.
# Libraries
"""
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.models as models
import numpy as np
import copy
"""Settings"""
SMOOTH = True
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
EPS = 1e-6
STYLE_FEATURE_DISTANCE = 'L2' # Options: 'L2', 'COSINE'
IMAGE_SIZE = 384
# desired size of the output image
imsize = IMAGE_SIZE if torch.cuda.is_available() else 128
# desired depth layers to compute style/content losses :
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
"""Loading VGG model"""
cnn = models.vgg19(pretrained=True).features.to(DEVICE).eval()
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(DEVICE)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(DEVICE)
"""Image Loader"""
loader = transforms.Compose([
transforms.Resize((imsize, imsize)), # scale imported image
transforms.ToTensor()]) # transform it into a torch tensor
"""Gram matrix"""
def gram_matrix(input):
a, b, c, d = input.size()
features = input.view(a * b, c * d)
G = torch.mm(features, features.t()) # compute the gram product
return G.div(a * b * c * d)
class StyleLoss(nn.Module):
def __init__(self, target):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target).detach()
def forward(self, input):
G = gram_matrix(input)
if STYLE_FEATURE_DISTANCE == 'L2':
self.loss = F.mse_loss(G, self.target)
elif STYLE_FEATURE_DISTANCE == 'COSINE':
self.loss = cosine_similarity(G, self.target)
else:
raise NotImplementedError
return input
"""Cosine similarity"""
def cosine_similarity(x, y):
x = x.view(1, -1)
y = y.view(1, -1)
return 1 - (torch.sum(x * y) / (x.norm(2) * y.norm(2) + EPS))
"""Image loader"""
def preprocessing(image):
# compute color palette
image = loader(image).unsqueeze(0)
image = image[:, :3, :, :]
return image.to(DEVICE, torch.float)
"""Normalization"""
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, img):
# normalize img
return (img - self.mean) / self.std
"""Get style model and style loss"""
def get_style_model_and_style_loss(cnn, normalization_mean,
normalization_std, target_image,
style_layers=style_layers_default):
cnn = copy.deepcopy(cnn)
# normalization module
normalization = Normalization(normalization_mean,
normalization_std).to(DEVICE)
style_losses = []
# assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
# The in-place version doesn't play very nicely with the ContentLoss
# and StyleLoss we insert below. So we replace with out-of-place
# ones here.
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(
layer.__class__.__name__))
model.add_module(name, layer)
if name in style_layers:
# add content loss:
target = model(target_image).detach()
style_loss = StyleLoss(target)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses
def style_loss(input, target):
input = preprocessing(input)
target = preprocessing(target)
assert input.size() == input.size(), \
"input and target images should have the same size"
""" Mask generation"""
model, style_loss_layers = get_style_model_and_style_loss(
cnn, cnn_normalization_mean, cnn_normalization_std, target)
model(input)
style_loss = 0
for cl in style_loss_layers:
style_loss += cl.loss
style_loss_value = style_loss.item()
print(f'Style loss: {style_loss_value}')
return style_loss_value