forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonnx_trt_backend.cpp
1055 lines (977 loc) · 34.7 KB
/
onnx_trt_backend.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "NvOnnxParser.h"
#include "common.hpp"
#include "onnx/onnxifi.h"
#include <cuda_runtime.h>
#include <NvInfer.h>
#include <atomic>
#include <ctime>
#include <mutex>
#include <thrust/device_vector.h>
#include <unordered_map>
#define BACKEND_NAME "TensorRT"
#define BACKEND_VENDOR "Nvidia"
#define BACKEND_VERSION "1.0.0"
#define BACKEND_EXTENSIONS ""
#define BACKEND_IR_VERSION "3"
#define BACKEND_OPSET_VERSION "ai.onnx:7"
namespace {
struct InferDeleter {
template <typename T> void operator()(T *obj) const {
if (obj) {
obj->destroy();
}
}
};
template <typename T> inline std::shared_ptr<T> infer_object(T *obj) {
if (!obj) {
throw std::runtime_error("Failed to create object");
}
return std::shared_ptr<T>(obj, InferDeleter());
}
// Logger for GIE info/warning/errors
class TRT_Logger : public nvinfer1::ILogger {
nvinfer1::ILogger::Severity _verbosity;
std::ostream *_ostream;
public:
TRT_Logger(Severity verbosity = Severity::kWARNING,
std::ostream &ostream = std::cout)
: _verbosity(verbosity), _ostream(&ostream) {}
void log(Severity severity, const char *msg) override {
if (severity <= _verbosity) {
time_t rawtime = std::time(0);
char buf[256];
strftime(&buf[0], 256, "%Y-%m-%d %H:%M:%S", std::gmtime(&rawtime));
const char *sevstr =
(severity == Severity::kINTERNAL_ERROR
? " BUG"
: severity == Severity::kERROR
? " ERROR"
: severity == Severity::kWARNING
? "WARNING"
: severity == Severity::kINFO ? " INFO"
: "UNKNOWN");
(*_ostream) << "[" << buf << " " << sevstr << "] " << msg << std::endl;
}
}
};
onnxStatus CheckShape(const nvinfer1::Dims &dims,
const onnxTensorDescriptorV1 &desc,
bool allow_same_size) {
bool matched = false;
if (desc.dimensions == static_cast<uint32_t>(dims.nbDims) + 1) {
matched = true;
for (int i = 0; i < dims.nbDims; ++i) {
if (desc.shape[i + 1] != static_cast<uint64_t>(dims.d[i])) {
return ONNXIFI_STATUS_MISMATCHING_SHAPE;
}
}
} else if (allow_same_size && desc.dimensions > 1) {
size_t dim_size = 1;
for (int i = 0; i < dims.nbDims; ++i) {
dim_size *= dims.d[i];
}
size_t desc_size = 1;
// Skip the first dim which is batch size
for (uint32_t i = 1; i < desc.dimensions; ++i) {
desc_size *= desc.shape[i];
}
matched = (dim_size == desc_size) ? true : false;
if (!matched) {
std::cerr << "mismatched output " << desc.name << ": " << desc_size
<< " vs " << dim_size << std::endl;
}
}
return matched ? ONNXIFI_STATUS_SUCCESS : ONNXIFI_STATUS_MISMATCHING_SHAPE;
}
size_t GetTensorFootprint(const onnxTensorDescriptorV1 &input) {
size_t acc = 1;
for (unsigned i = 0; i < input.dimensions; ++i) {
acc *= input.shape[i];
}
size_t multiplier = 1;
switch (input.dataType) {
case ONNXIFI_DATATYPE_FLOAT16:
multiplier = sizeof(float) / 2;
break;
case ONNXIFI_DATATYPE_FLOAT32:
multiplier = sizeof(float);
break;
case ONNXIFI_DATATYPE_INT8:
multiplier = sizeof(int8_t);
break;
case ONNXIFI_DATATYPE_INT16:
multiplier = sizeof(int16_t);
break;
case ONNXIFI_DATATYPE_INT32:
multiplier = sizeof(int32_t);
break;
case ONNXIFI_DATATYPE_UINT8:
multiplier = sizeof(uint8_t);
break;
case ONNXIFI_DATATYPE_UINT16:
multiplier = sizeof(uint16_t);
break;
case ONNXIFI_DATATYPE_UINT32:
multiplier = sizeof(uint32_t);
break;
default:
multiplier = 0;
}
return acc * multiplier;
}
struct OnnxTensorRTBackendID {
OnnxTensorRTBackendID(int i) : device_id(i) {}
int device_id{0};
};
class OnnxTensorRTEvent {
public:
OnnxTensorRTEvent(cudaStream_t s) : stream_(s) {
if (cudaEventCreateWithFlags(&event_, cudaEventDisableTiming) !=
cudaSuccess) {
throw std::runtime_error("Cannot create cudaEvent");
}
}
~OnnxTensorRTEvent() { cudaEventDestroy(event_); }
onnxStatus Signal() {
std::lock_guard<std::mutex> guard(mutex_);
if (fired_) {
return ONNXIFI_STATUS_INVALID_STATE;
}
if (cudaEventRecord(event_, stream_) == cudaSuccess) {
fired_ = true;
return ONNXIFI_STATUS_SUCCESS;
} else {
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
}
onnxStatus Wait() {
std::lock_guard<std::mutex> guard(mutex_);
return (cudaEventSynchronize(event_) == cudaSuccess)
? ONNXIFI_STATUS_SUCCESS
: ONNXIFI_STATUS_INTERNAL_ERROR;
}
onnxStatus CheckState(onnxEventState *state) {
std::lock_guard<std::mutex> guard(mutex_);
if (!fired_) {
*state = ONNXIFI_EVENT_STATE_NONSIGNALLED;
return ONNXIFI_STATUS_SUCCESS;
}
auto rt = cudaEventQuery(event_);
if (rt == cudaErrorNotReady) {
*state = ONNXIFI_EVENT_STATE_NONSIGNALLED;
return ONNXIFI_STATUS_SUCCESS;
} else if (rt == cudaSuccess) {
*state = ONNXIFI_EVENT_STATE_SIGNALLED;
return ONNXIFI_STATUS_SUCCESS;
} else {
*state = ONNXIFI_EVENT_STATE_INVALID;
return ONNXIFI_STATUS_INVALID_STATE;
}
}
private:
std::mutex mutex_;
std::atomic<bool> fired_{false};
cudaStream_t stream_{0};
cudaEvent_t event_;
};
class CudaDeviceGuard {
public:
CudaDeviceGuard(int backend_id) {
if (cudaGetDevice(&saved_device_) != cudaSuccess) {
throw std::runtime_error("Cannot run cudaGetDevice");
}
if (saved_device_ != backend_id) {
if (cudaSetDevice(backend_id) != cudaSuccess) {
throw std::runtime_error("Cannot run cudaSetDevice");
}
need_restore_ = true;
}
}
~CudaDeviceGuard() {
if (need_restore_) {
cudaSetDevice(saved_device_);
}
}
private:
int saved_device_{-1};
bool need_restore_{false};
};
class OnnxTensorRTBackendRep {
public:
OnnxTensorRTBackendRep(const OnnxTensorRTBackendID &backend_id)
: device_id_(backend_id.device_id) {
trt_builder_ = infer_object(nvinfer1::createInferBuilder(trt_logger_));
trt_builder_->setMaxBatchSize(max_batch_size_);
trt_builder_->setMaxWorkspaceSize(max_workspace_size_);
trt_network_ = infer_object(trt_builder_->createNetwork());
parser_ = infer_object(
nvonnxparser::createParser(*trt_network_, trt_logger_));
CudaDeviceGuard guard(device_id_);
if (cudaStreamCreate(&stream_) != cudaSuccess) {
throw std::runtime_error("Cannot create cudaStream");
}
}
~OnnxTensorRTBackendRep() { cudaStreamDestroy(stream_); }
int device_id() const { return device_id_; }
cudaStream_t stream() const { return stream_; }
onnxStatus ImportModel(void const *serialized_onnx_model,
size_t serialized_onnx_model_size,
uint32_t weight_count,
onnxTensorDescriptorV1 const *weight_descriptors) {
auto succeeded = parser_->parseWithWeightDescriptors(
serialized_onnx_model, serialized_onnx_model_size, weight_count,
weight_descriptors);
if (!succeeded) {
const auto num_errors = parser_->getNbErrors();
if (num_errors > 0) {
const auto *error = parser_->getError(num_errors - 1);
std::cerr << "Parsing error: " << error->desc() << " at "
<< error->file() << ":" << error->line() << " ("
<< error->func() << ")." << std::endl;
switch (error->code()) {
case nvonnxparser::ErrorCode::kMEM_ALLOC_FAILED:
return ONNXIFI_STATUS_NO_SYSTEM_MEMORY;
case nvonnxparser::ErrorCode::kMODEL_DESERIALIZE_FAILED:
return ONNXIFI_STATUS_INVALID_PROTOBUF;
case nvonnxparser::ErrorCode::kINVALID_VALUE:
return ONNXIFI_STATUS_UNSUPPORTED_ATTRIBUTE;
case nvonnxparser::ErrorCode::kINVALID_GRAPH:
case nvonnxparser::ErrorCode::kINVALID_NODE:
return ONNXIFI_STATUS_INVALID_MODEL;
case nvonnxparser::ErrorCode::kUNSUPPORTED_NODE:
case nvonnxparser::ErrorCode::kUNSUPPORTED_GRAPH:
return ONNXIFI_STATUS_UNSUPPORTED_OPERATOR;
default:
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
}
}
return ONNXIFI_STATUS_SUCCESS;
}
nvinfer1::ICudaEngine *buildCudaEngine() {
return trt_builder_->buildCudaEngine(*trt_network_);
}
size_t max_batch_size() const { return max_batch_size_; }
private:
TRT_Logger trt_logger_;
cudaStream_t stream_;
std::shared_ptr<nvinfer1::IBuilder> trt_builder_{nullptr};
std::shared_ptr<nvinfer1::INetworkDefinition> trt_network_{nullptr};
std::shared_ptr<nvonnxparser::IParser> parser_{nullptr};
// TODO: configerable max batch size
int device_id_{0};
size_t max_batch_size_{128};
size_t max_workspace_size_{1024UL * 1024UL * 1024UL * 2UL};
};
class GraphRep {
public:
GraphRep(OnnxTensorRTBackendRep *backendrep)
: device_id_(backendrep->device_id()),
max_batch_size_(backendrep->max_batch_size()),
stream_(backendrep->stream()) {
if (cudaSetDevice(device_id_) != cudaSuccess) {
throw std::runtime_error("Cannot set CUDA device");
}
trt_engine_ = infer_object(backendrep->buildCudaEngine());
max_batch_size_ = backendrep->max_batch_size();
}
~GraphRep() { ClearDeviceBuffers(); }
onnxStatus InitIO(uint32_t inputsCount,
const onnxTensorDescriptorV1 *inputDescriptors,
uint32_t outputsCount,
const onnxTensorDescriptorV1 *outputDescriptors);
onnxStatus Run();
cudaStream_t stream() const { return stream_; }
private:
void ClearDeviceBuffers();
onnxStatus CheckAndBindTensor(const nvinfer1::Dims &dims,
const onnxTensorDescriptorV1 &tensor,
bool is_output);
std::shared_ptr<nvinfer1::ICudaEngine> trt_engine_{nullptr};
std::shared_ptr<nvinfer1::IExecutionContext> trt_executor_{nullptr};
std::vector<void *> bindings_;
std::unordered_map<std::string, const onnxTensorDescriptorV1 *> input_map_;
std::unordered_map<std::string, const onnxTensorDescriptorV1 *> output_map_;
std::unordered_map<std::string, void *> device_buffers_;
int device_id_{0};
size_t max_batch_size_{0};
size_t batch_size_{0};
cudaStream_t stream_;
};
void GraphRep::ClearDeviceBuffers() {
for (auto kv : device_buffers_) {
cudaFree(kv.second);
}
device_buffers_.clear();
}
onnxStatus GraphRep::CheckAndBindTensor(const nvinfer1::Dims &dims,
const onnxTensorDescriptorV1 &tensor,
bool is_output) {
// Check memory type
if (tensor.memoryType != ONNXIFI_MEMORY_TYPE_CPU &&
tensor.memoryType != ONNXIFI_MEMORY_TYPE_CUDA_BUFFER) {
return ONNXIFI_STATUS_INVALID_DATATYPE;
}
// Check tensor shape
auto ret = CheckShape(dims, tensor, is_output);
if (ret != ONNXIFI_STATUS_SUCCESS) {
return ret;
}
// For CPU tensor, we need to create a device memory and the bind. For CUDA
// tensor, we can bind directly
if (tensor.memoryType == ONNXIFI_MEMORY_TYPE_CPU) {
void *cuda_buffer;
size_t footprint = GetTensorFootprint(tensor);
if (!footprint) {
return ONNXIFI_STATUS_INVALID_SHAPE;
}
if (cudaMalloc(&cuda_buffer, footprint) != cudaSuccess) {
return ONNXIFI_STATUS_NO_DEVICE_MEMORY;
}
device_buffers_.emplace(tensor.name, cuda_buffer);
bindings_.push_back(cuda_buffer);
} else {
bindings_.push_back((void *)(tensor.buffer));
}
return ONNXIFI_STATUS_SUCCESS;
}
onnxStatus GraphRep::InitIO(uint32_t inputsCount,
const onnxTensorDescriptorV1 *inputDescriptors,
uint32_t outputsCount,
const onnxTensorDescriptorV1 *outputDescriptors) {
CudaDeviceGuard guard(device_id_);
ClearDeviceBuffers();
// Setup the input/output bindings and decide batch size
for (unsigned i = 0; i < inputsCount; ++i) {
if (inputDescriptors[i].tag != ONNXIFI_TAG_TENSOR_DESCRIPTOR_V1) {
return ONNXIFI_STATUS_UNSUPPORTED_TAG;
}
if (!inputDescriptors[i].name) {
return ONNXIFI_STATUS_INVALID_NAME;
}
// We only support NCHW
if (inputDescriptors[i].dimensions != 4) {
return ONNXIFI_STATUS_INVALID_SHAPE;
}
if (i == 0) {
batch_size_ = inputDescriptors[i].shape[0];
} else {
if (batch_size_ != inputDescriptors[i].shape[0]) {
return ONNXIFI_STATUS_INVALID_SHAPE;
}
}
std::cerr << "Adding input " << i << ": " << inputDescriptors[i].name
<< ", type: " << inputDescriptors[i].memoryType << std::endl;
input_map_.emplace(std::string(inputDescriptors[i].name),
inputDescriptors + i);
}
// We don't support the case when batch size is larger than max batch size
// yet, but this is not a hard constraint.
if (batch_size_ > max_batch_size_) {
return ONNXIFI_STATUS_NO_DEVICE_RESOURCES;
}
for (unsigned i = 0; i < outputsCount; ++i) {
if (outputDescriptors[i].tag != ONNXIFI_TAG_TENSOR_DESCRIPTOR_V1) {
return ONNXIFI_STATUS_UNSUPPORTED_TAG;
}
if (!outputDescriptors[i].name) {
return ONNXIFI_STATUS_INVALID_NAME;
}
output_map_.emplace(std::string(outputDescriptors[i].name),
outputDescriptors + i);
}
int nbindings = trt_engine_->getNbBindings();
for (int b = 0; b < nbindings; ++b) {
nvinfer1::Dims dims = trt_engine_->getBindingDimensions(b);
// Check data type consistency
auto binding_datatype = trt_engine_->getBindingDataType(b);
if (binding_datatype != nvinfer1::DataType::kFLOAT) {
return ONNXIFI_STATUS_MISMATCHING_DATATYPE;
}
if (trt_engine_->bindingIsInput(b)) {
std::cerr << "Input: " << trt_engine_->getBindingName(b)
<< ", Dim: " << dims.d[0] << ", " << dims.d[1] << ", "
<< dims.d[2] << std::endl;
const auto it = input_map_.find(trt_engine_->getBindingName(b));
if (it == input_map_.end()) {
return ONNXIFI_STATUS_UNIDENTIFIED_NAME;
}
if (auto ret = CheckAndBindTensor(dims, *it->second, false) !=
ONNXIFI_STATUS_SUCCESS) {
return ret;
}
} else {
// output: for output, we enforce 4D dim although it can be in 2D, we do
// an implicit reshape in `CheckAndBindTensor`
const auto it = output_map_.find(trt_engine_->getBindingName(b));
if (it == output_map_.end()) {
return ONNXIFI_STATUS_UNIDENTIFIED_NAME;
}
if (auto ret = CheckAndBindTensor(dims, *it->second, true) !=
ONNXIFI_STATUS_SUCCESS) {
return ret;
}
}
}
trt_executor_ = infer_object(trt_engine_->createExecutionContext());
return ONNXIFI_STATUS_SUCCESS;
}
onnxStatus GraphRep::Run() {
CudaDeviceGuard guard(device_id_);
// Copy input if necessary
// TODO: cache tensor footprint
for (auto kv : device_buffers_) {
auto it = input_map_.find(kv.first);
if (it != input_map_.end()) {
cudaMemcpyAsync(kv.second, (void *)(it->second->buffer),
GetTensorFootprint(*it->second), cudaMemcpyHostToDevice,
stream_);
} else if (output_map_.find(kv.first) == output_map_.end()) {
return ONNXIFI_STATUS_UNIDENTIFIED_NAME;
}
}
// Run TensorRT
trt_executor_->enqueue(batch_size_, bindings_.data(), stream_, nullptr);
// Copy output if necessary
for (auto kv : device_buffers_) {
auto it = output_map_.find(kv.first);
if (it != output_map_.end()) {
cudaMemcpyAsync((void *)(it->second->buffer), kv.second,
GetTensorFootprint(*it->second), cudaMemcpyDeviceToHost,
stream_);
} else if (input_map_.find(kv.first) == input_map_.end()) {
return ONNXIFI_STATUS_UNIDENTIFIED_NAME;
}
}
return ONNXIFI_STATUS_SUCCESS;
}
template <class F> onnxStatus OnnxifiTryCatch(F &&tryBlock) {
try {
return tryBlock();
} catch (const std::bad_alloc &e) {
std::cerr << "Allocation failed: " << e.what() << std::endl;
return ONNXIFI_STATUS_NO_SYSTEM_MEMORY;
} catch (const std::exception &e) {
std::cerr << "Internal Error: " << e.what() << std::endl;
return ONNXIFI_STATUS_INTERNAL_ERROR;
} catch (...) {
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
}
} // namespace
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxGetBackendIDs(onnxBackendID *backendIDs, size_t *numBackends) {
return OnnxifiTryCatch([&] {
if (!numBackends) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
int nDevices_int{0};
cudaGetDeviceCount(&nDevices_int);
size_t nDevices{static_cast<size_t>(nDevices_int)};
if (!backendIDs) {
*numBackends = nDevices;
return ONNXIFI_STATUS_FALLBACK;
} else {
size_t len = (*numBackends < nDevices) ? (*numBackends) : nDevices;
std::vector<std::unique_ptr<OnnxTensorRTBackendID>> vtmp;
for (size_t i = 0; i < len; ++i) {
vtmp.emplace_back(new OnnxTensorRTBackendID(i));
}
for (size_t i = 0; i < len; ++i) {
backendIDs[i] = (onnxBackendID)(vtmp[i].release());
}
return (*numBackends < nDevices) ? ONNXIFI_STATUS_FALLBACK
: ONNXIFI_STATUS_SUCCESS;
}
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxReleaseBackendID(onnxBackendID backendID) {
return OnnxifiTryCatch([&] {
auto *backend_id = reinterpret_cast<OnnxTensorRTBackendID *>(backendID);
if (!backend_id) {
return ONNXIFI_STATUS_INVALID_ID;
}
delete backend_id;
return ONNXIFI_STATUS_SUCCESS;
});
}
static onnxStatus setUIntInfo(
void* valuePtr,
size_t *valueSizePtr,
uint64_t value)
{
onnxStatus status = ONNXIFI_STATUS_FALLBACK;
if (valuePtr != nullptr && *valueSizePtr >= sizeof(uint64_t)) {
*static_cast<uint64_t*>(valuePtr) = value;
status = ONNXIFI_STATUS_SUCCESS;
}
*valueSizePtr = sizeof(uint64_t);
return status;
}
static onnxStatus setStringInfo(
void* valuePtr,
size_t *valueSizePtr,
const char* value,
size_t valueSize)
{
onnxStatus status = ONNXIFI_STATUS_FALLBACK;
if (valuePtr != nullptr && *valueSizePtr >= valueSize) {
memcpy(valuePtr, value, valueSize);
status = ONNXIFI_STATUS_SUCCESS;
}
*valueSizePtr = valueSize;
return status;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxGetBackendInfo(onnxBackendID backendID, onnxBackendInfo infoType,
void *infoValue, size_t *infoValueSize) {
return OnnxifiTryCatch([&] {
if (infoValueSize == nullptr) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
if (backendID == nullptr) {
return ONNXIFI_STATUS_INVALID_ID;
}
const int cudaDeviceId =
static_cast<OnnxTensorRTBackendID*>(backendID)->device_id;
switch (infoType) {
case ONNXIFI_BACKEND_ONNXIFI_VERSION:
return setUIntInfo(infoValue, infoValueSize,
UINT64_C(0x0000000100000000));
case ONNXIFI_BACKEND_NAME:
return setStringInfo(infoValue, infoValueSize,
BACKEND_NAME, strlen(BACKEND_NAME));
case ONNXIFI_BACKEND_VENDOR:
return setStringInfo(infoValue, infoValueSize,
BACKEND_VENDOR, strlen(BACKEND_VENDOR));
case ONNXIFI_BACKEND_VERSION:
return setStringInfo(infoValue, infoValueSize,
BACKEND_VERSION, strlen(BACKEND_VERSION));
case ONNXIFI_BACKEND_EXTENSIONS:
return setStringInfo(infoValue, infoValueSize,
BACKEND_EXTENSIONS, strlen(BACKEND_EXTENSIONS));
case ONNXIFI_BACKEND_DEVICE:
{
cudaDeviceProp deviceProperties = { 0 };
cudaError_t cudaError =
cudaGetDeviceProperties(&deviceProperties, cudaDeviceId);
switch (cudaError) {
case cudaSuccess:
break;
case cudaErrorInvalidDevice:
return ONNXIFI_STATUS_INVALID_ID;
default:
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
return setStringInfo(infoValue, infoValueSize,
deviceProperties.name,
strnlen(deviceProperties.name, sizeof(deviceProperties.name)));
}
case ONNXIFI_BACKEND_DEVICE_TYPE:
return setUIntInfo(infoValue, infoValueSize,
ONNXIFI_DEVICE_TYPE_GPU);
case ONNXIFI_BACKEND_ONNX_IR_VERSION:
return setStringInfo(infoValue, infoValueSize,
BACKEND_IR_VERSION, strlen(BACKEND_IR_VERSION));
case ONNXIFI_BACKEND_OPSET_VERSION:
return setStringInfo(infoValue, infoValueSize,
BACKEND_OPSET_VERSION, strlen(BACKEND_OPSET_VERSION));
case ONNXIFI_BACKEND_CAPABILITIES:
return setUIntInfo(infoValue, infoValueSize, 0);
case ONNXIFI_BACKEND_INIT_PROPERTIES:
return setUIntInfo(infoValue, infoValueSize, 0);
case ONNXIFI_BACKEND_MEMORY_TYPES:
return setUIntInfo(infoValue, infoValueSize,
ONNXIFI_MEMORY_TYPE_CPU | ONNXIFI_MEMORY_TYPE_CUDA_BUFFER);
case ONNXIFI_BACKEND_GRAPH_INIT_PROPERTIES:
return setUIntInfo(infoValue, infoValueSize, 0);
case ONNXIFI_BACKEND_SYNCHRONIZATION_TYPES:
return setUIntInfo(infoValue, infoValueSize,
ONNXIFI_SYNCHRONIZATION_EVENT);
case ONNXIFI_BACKEND_CPU_MEMORY_READ_BANDWIDTH:
case ONNXIFI_BACKEND_CPU_MEMORY_WRITE_BANDWIDTH:
/* Assume PCI Express 3.0 x16 */
return setUIntInfo(infoValue, infoValueSize, UINT64_C(16519104985));
case ONNXIFI_BACKEND_MAX_GRAPH_COUNT:
return setUIntInfo(infoValue, infoValueSize, UINT64_MAX);
case ONNXIFI_BACKEND_MEMORY_SIZE:
case ONNXIFI_BACKEND_MAX_GRAPH_SIZE:
case ONNXIFI_BACKEND_PCI_BUS_ID:
case ONNXIFI_BACKEND_PCI_DEVICE_ID:
case ONNXIFI_BACKEND_PCI_DOMAIN_ID:
case ONNXIFI_BACKEND_MACS_FP32:
case ONNXIFI_BACKEND_MACS_FP16:
case ONNXIFI_BACKEND_MEMORY_BANDWIDTH:
{
cudaDeviceProp deviceProperties = { 0 };
cudaError_t cudaError =
cudaGetDeviceProperties(&deviceProperties, cudaDeviceId);
switch (cudaError) {
case cudaSuccess:
break;
case cudaErrorInvalidDevice:
return ONNXIFI_STATUS_INVALID_ID;
default:
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
switch (infoType) {
case ONNXIFI_BACKEND_MEMORY_SIZE:
case ONNXIFI_BACKEND_MAX_GRAPH_SIZE:
return setUIntInfo(infoValue, infoValueSize,
static_cast<uint64_t>(deviceProperties.totalGlobalMem));
case ONNXIFI_BACKEND_MEMORY_BANDWIDTH:
return setUIntInfo(infoValue, infoValueSize,
static_cast<uint64_t>(deviceProperties.memoryClockRate) *
static_cast<uint64_t>(deviceProperties.memoryBusWidth) *
/*
* clock rate: kHZ -> HZ (multiply by 1000)
* bus width: bits -> bytes (divide by 8)
* 2x DDR factor (multiply by 2)
*/
UINT64_C(250));
case ONNXIFI_BACKEND_PCI_BUS_ID:
return setUIntInfo(infoValue, infoValueSize,
static_cast<uint64_t>(deviceProperties.pciBusID));
case ONNXIFI_BACKEND_PCI_DEVICE_ID:
return setUIntInfo(infoValue, infoValueSize,
static_cast<uint64_t>(deviceProperties.pciDeviceID));
case ONNXIFI_BACKEND_PCI_DOMAIN_ID:
return setUIntInfo(infoValue, infoValueSize,
static_cast<uint64_t>(deviceProperties.pciDomainID));
case ONNXIFI_BACKEND_MACS_FP32:
{
/*
* See "32-bit floating-point add, multiply, multiply-add" in
* "Throughput of Native Arithmetic Instructions" table in
* CUDA Programming Guide. Multiply by 2 because we could FMA
* as two FLOPs.
*/
uint64_t flopsPerCycle = 0;
switch (deviceProperties.major) {
case 3:
/* Kepler */
flopsPerCycle = 192 * 2;
break;
case 5:
/* Maxwell */
flopsPerCycle = 128 * 2;
break;
case 6:
/* Pascal */
switch (deviceProperties.minor) {
case 0:
flopsPerCycle = 64 * 2;
break;
case 1:
flopsPerCycle = 128 * 2;
break;
case 2:
flopsPerCycle = 128 * 2;
break;
}
break;
case 7:
/* Volta */
if (deviceProperties.minor == 0) {
flopsPerCycle = 64 * 2;
}
break;
}
if (flopsPerCycle == 0) {
return ONNXIFI_STATUS_UNSUPPORTED_ATTRIBUTE;
}
return setUIntInfo(infoValue, infoValueSize,
UINT64_C(1000) /* KHz -> Hz */ *
static_cast<uint64_t>(deviceProperties.clockRate) *
static_cast<uint64_t>(deviceProperties.multiProcessorCount) *
flopsPerCycle);
}
case ONNXIFI_BACKEND_MACS_FP16:
{
/*
* See "16-bit floating-point add, multiply, multiply-add" and
* "32-bit floating-point add, multiply, multiply-add" in
* "Throughput of Native Arithmetic Instructions" table in
* CUDA Programming Guide. Use the maximum among 16-bit and 32-bit
* throughput. Multiply by 2 because we could FMA as two FLOPs.
*/
uint64_t flopsPerCycle = 0;
switch (deviceProperties.major) {
case 3:
/* Kepler */
flopsPerCycle = 192 * 2;
break;
case 5:
/* Maxwell */
if (deviceProperties.minor == 3) {
/* Maxwell-based Tegra supports FP16 at 2x rate */
flopsPerCycle = 256 * 2;
} else {
flopsPerCycle = 128 * 2;
}
break;
case 6:
/* Pascal */
switch (deviceProperties.minor) {
case 0:
/* Use FP16 */
flopsPerCycle = 128 * 2;
break;
case 1:
/* Use FP32 */
flopsPerCycle = 128 * 2;
break;
case 2:
/* Use FP16 */
flopsPerCycle = 256 * 2;
break;
}
break;
case 7:
/* Volta */
if (deviceProperties.minor == 0) {
/*
* Tensor Core:
* - 8 Tensor Cores per multiprocessor
* - 64 FMA/cycle on each Tensor Core
* - 2 FLOPs / FMA
*/
flopsPerCycle = 8 * 64 * 2;
}
break;
}
if (flopsPerCycle == 0) {
return ONNXIFI_STATUS_UNSUPPORTED_ATTRIBUTE;
}
return setUIntInfo(infoValue, infoValueSize,
UINT64_C(1000) /* KHz -> Hz */ *
static_cast<uint64_t>(deviceProperties.clockRate) *
static_cast<uint64_t>(deviceProperties.multiProcessorCount) *
flopsPerCycle);
}
default:
return ONNXIFI_STATUS_UNSUPPORTED_ATTRIBUTE;
}
}
case ONNXIFI_BACKEND_CUDA_INDEX:
return setUIntInfo(infoValue, infoValueSize,
static_cast<uint64_t>(cudaDeviceId));
default:
return ONNXIFI_STATUS_UNSUPPORTED_ATTRIBUTE;
}
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxGetBackendCompatibility(onnxBackendID backendID, size_t onnxModelSize,
const void *onnxModel) {
return OnnxifiTryCatch([&] {
if (!onnxModel) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
if (onnxModelSize == 0) {
return ONNXIFI_STATUS_INVALID_SIZE;
}
TRT_Logger trt_logger;
std::shared_ptr<nvinfer1::IBuilder> trt_builder = infer_object(nvinfer1::createInferBuilder(trt_logger));
std::shared_ptr<nvinfer1::INetworkDefinition> trt_network = infer_object(trt_builder->createNetwork());
auto parser = infer_object(nvonnxparser::createParser(*trt_network, trt_logger));
SubGraphCollection_t subgraphcollection;
if (parser->supportsModel(onnxModel, onnxModelSize, subgraphcollection)) {
return ONNXIFI_STATUS_SUCCESS;
} else {
return ONNXIFI_STATUS_UNSUPPORTED_OPERATOR;
}
});
}
// NB: Passing arguments to backend is tricky. And we need more documentation
// for it I didn't put any arguments here for now.
// TODO: submit arguments for
// - setMaxBatchSize (size_t)
// - setMaxWorkspaceSize (size_t)
// - setHalf2Mode (bool)
// - setInt8Mode (bool)
// - setDebugSync (bool)
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxInitBackend(onnxBackendID backendID, const uint64_t *auxPropertiesList,
onnxBackend *backend) {
auto ret = OnnxifiTryCatch([&] {
auto *backend_id = reinterpret_cast<OnnxTensorRTBackendID *>(backendID);
if (!backend_id) {
return ONNXIFI_STATUS_INVALID_ID;
}
*backend = (onnxBackend)(new OnnxTensorRTBackendRep(*backend_id));
return ONNXIFI_STATUS_SUCCESS;
});
if (ret != ONNXIFI_STATUS_SUCCESS) {
*backend = NULL;
}
return ret;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxReleaseBackend(onnxBackend backend) {
return OnnxifiTryCatch([&] {
auto *backendrep = reinterpret_cast<OnnxTensorRTBackendRep *>(backend);
if (!backendrep) {
return ONNXIFI_STATUS_INVALID_BACKEND;
}
delete backendrep;
return ONNXIFI_STATUS_SUCCESS;
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxInitEvent(onnxBackend backend, onnxEvent *event) {
auto ret = OnnxifiTryCatch([&] {
if (!event) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
auto *backendrep = reinterpret_cast<OnnxTensorRTBackendRep *>(backend);
if (!backendrep) {
return ONNXIFI_STATUS_INVALID_BACKEND;
}
*event = reinterpret_cast<onnxEvent>(
new OnnxTensorRTEvent(backendrep->stream()));
return ONNXIFI_STATUS_SUCCESS;
});
if (ret != ONNXIFI_STATUS_SUCCESS) {
*event = NULL;
}
return ret;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxSignalEvent(onnxEvent event) {
return OnnxifiTryCatch([&] {
auto trt_event = reinterpret_cast<OnnxTensorRTEvent *>(event);
if (!trt_event) {
return ONNXIFI_STATUS_INVALID_EVENT;
}
return trt_event->Signal();
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxWaitEvent(onnxEvent event) {
return OnnxifiTryCatch([&] {
auto trt_event = reinterpret_cast<OnnxTensorRTEvent *>(event);
if (!trt_event) {
return ONNXIFI_STATUS_INVALID_EVENT;
}
return trt_event->Wait();
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxGetEventState(onnxEvent event, onnxEventState *state) {
return OnnxifiTryCatch([&] {
if (!state) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
*state = ONNXIFI_EVENT_STATE_INVALID;
auto trt_event = reinterpret_cast<OnnxTensorRTEvent *>(event);
if (!trt_event) {
return ONNXIFI_STATUS_INVALID_EVENT;
}
return trt_event->CheckState(state);
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxReleaseEvent(onnxEvent event) {
return OnnxifiTryCatch([&] {
auto *trt_event = reinterpret_cast<OnnxTensorRTEvent *>(event);
if (!trt_event) {
return ONNXIFI_STATUS_INVALID_EVENT;
}
delete trt_event;
return ONNXIFI_STATUS_SUCCESS;
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxInitGraph(
onnxBackend backend, const uint64_t *auxPropertiesList,
size_t onnxModelSize, const void *onnxModel, uint32_t weightsCount,
const onnxTensorDescriptorV1 *weightDescriptors, onnxGraph *graph) {
auto ret = OnnxifiTryCatch([&] {
auto *backendrep = reinterpret_cast<OnnxTensorRTBackendRep *>(backend);
if (!backendrep) {
return ONNXIFI_STATUS_INVALID_BACKEND;
}
if (!onnxModel) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
if (onnxModelSize == 0) {
return ONNXIFI_STATUS_INVALID_SIZE;
}
for (auto i = 0U; i < weightsCount; ++i) {
if (weightDescriptors[i].tag != ONNXIFI_TAG_TENSOR_DESCRIPTOR_V1) {
return ONNXIFI_STATUS_UNSUPPORTED_TAG;
}
}
// Parse the model
auto ret = backendrep->ImportModel(onnxModel, onnxModelSize, weightsCount,
weightDescriptors);
if (ret != ONNXIFI_STATUS_SUCCESS) {
return ret;
}
// Create the TRT engine
*graph = (onnxGraph)(new GraphRep(backendrep));
return ONNXIFI_STATUS_SUCCESS;
});
if (ret != ONNXIFI_STATUS_SUCCESS) {
*graph = NULL;
}
return ret;
}
// NB: in the context of TRT, this step will setup the input/output bindings for
// ICudaEngine
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxSetGraphIO(
onnxGraph graph, uint32_t inputsCount,
const onnxTensorDescriptorV1 *inputDescriptors, uint32_t outputsCount,
const onnxTensorDescriptorV1 *outputDescriptors) {