-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathclassify.py
129 lines (104 loc) · 4 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import pandas as pd
import numpy as np
from sklearn import ensemble
from sklearn import linear_model
from sklearn import tree
from sklearn import svm
from sklearn import neighbors
from sklearn import preprocessing
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
# scikit-learn normal
# from sklearn.grid_search import GridSearchCV
# spark
from pyspark import SparkContext, SparkConf
from spark_sklearn import GridSearchCV
def top_tfidf_feats(row, features, top_n=25):
topn_ids = np.argsort(row)[::-1][:top_n]
top_feats = [(features[i], row[i]) for i in topn_ids]
df = pd.DataFrame(top_feats)
df.columns = ['feature', 'tfidf']
return df
def top_feats_in_doc(Xtr, features, row_id, top_n=25):
''' Top tfidf features in specific document (matrix row) '''
row = np.squeeze(Xtr[row_id].toarray())
return top_tfidf_feats(row, features, top_n)
# scikit-learn normal
# from sklearn.grid_search import GridSearchCV
# spark
#from pyspark import SparkContext, SparkConf
#from spark_sklearn import GridSearchCV
from sklearn import preprocessing
from sklearn.cross_validation import train_test_split
import sklearn.metrics as metrics
import matplotlib.pyplot as plt
from collections import Counter
LISTINGSFILE = '/mapr/tmclust1/user/mapr/pyspark-learn/airbnb/listings.csv'
REVIEWSFILE = '/mapr/tmclust1/user/mapr/pyspark-learn/airbnb/reviews.csv'
cols = ['id',
'neighbourhood_cleansed',
]
rcols = [ 'listing_id', 'comments' ]
nbhs = [ 'Mission', 'South of Market', 'Western Addition' ]
# read the file into a dataframe
df = pd.read_csv(LISTINGSFILE, usecols=cols, index_col='id')
rdf = pd.read_csv(REVIEWSFILE, usecols=rcols)
# combine the reviews with the listings into a single dataframe
# indexed by listing ID
rdf = rdf.groupby(['listing_id'])['comments']. \
apply(lambda x: ' '.join(x.astype(str))).reset_index()
rdf = rdf.set_index(rdf['listing_id'].astype(float))
df = pd.concat([df, rdf], axis = 1)
print "before filtering: %d" % len(df.index)
df = df.dropna(axis=0)
df = df[df.neighbourhood_cleansed.isin(nbhs)]
print "after filtering: %d" % len(df.index)
le = preprocessing.LabelEncoder().fit(df.neighbourhood_cleansed)
df['nbh'] = le.transform(df.neighbourhood_cleansed)
tfid = TfidfVectorizer()
ttext = tfid.fit_transform(df['comments'])
#print top_feats_in_doc(ttext, tfid.get_feature_names(), 1, 10)
#sys.exit(0)
print "%d %d" % (ttext.shape[0], len(df['nbh']))
X_train, X_test, y_train, y_test = \
train_test_split(ttext, df['nbh'],
test_size=0.2, random_state=1)
rs = 1
ests = [ neighbors.KNeighborsClassifier(3),
RandomForestClassifier(random_state=rs) ]
ests_labels = np.array(['KNeighbors', 'RandomForest' ])
for i, e in enumerate(ests):
e.fit(X_train, y_train)
this_score = metrics.accuracy_score(y_test, e.predict(X_test))
scorestr = "%s: Accuracy Score %0.2f" % (ests_labels[i],
this_score)
print
print scorestr
print "-" * len(scorestr)
print metrics.classification_report(y_test,
e.predict(X_test), target_names=le.classes_)
tuned_parameters = { "max_depth": [3, None],
"max_features": [1, 'auto'],
"min_samples_split": [1, 20],
"n_estimators": [10, 300, 500] }
rf = RandomForestClassifier(random_state=rs)
# spark-sklearn
conf = SparkConf()
sc = SparkContext(conf=conf)
clf = GridSearchCV(sc, rf, cv=3,
param_grid=tuned_parameters,
scoring='accuracy')
# scikit-learn
# clf = GridSearchCV(rf, cv=2, scoring='accuracy',
# param_grid=tuned_parameters,
# verbose=True)
preds = clf.fit(X_train, y_train)
best = clf.best_estimator_
this_score = metrics.accuracy_score(y_test, best.predict(X_test))
scorestr = "RF / GridSearchCV: Accuracy Score %0.2f" % this_score
print
print scorestr
print "-" * len(scorestr)
print metrics.classification_report(y_test,
best.predict(X_test), target_names=le.classes_)