forked from microsoft/CNTK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInceptionV3_ImageNet_Distributed.py
158 lines (125 loc) · 7.46 KB
/
InceptionV3_ImageNet_Distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license. See LICENSE.md file in the project root
# for full license information.
# ==============================================================================
import os
import math
import argparse
import numpy as np
import cntk as C
from InceptionV3_ImageNet import create_image_mb_source, create_inception_v3
# default Paths relative to current python file.
abs_path = os.path.dirname(os.path.abspath(__file__))
data_path = os.path.join(abs_path, "..", "..", "..", "..", "DataSets", "ImageNet")
config_path = abs_path
model_path = os.path.join(abs_path, "Models")
log_dir = None
model_name = "InceptionV3.model"
# Create trainer
def create_trainer(network, epoch_size, num_epochs, minibatch_size, num_quantization_bits, progress_printer):
# CNTK weights new gradient by (1-momentum) for unit gain,
# thus we divide Caffe's learning rate by (1-momentum)
initial_learning_rate = 0.45 # equal to 0.045 in caffe
initial_learning_rate *= minibatch_size / 32
learn_rate_adjust_interval = 2
learn_rate_decrease_factor = 0.94
# Set learning parameters
lr_per_mb = []
learning_rate = initial_learning_rate
for i in range(0, num_epochs, learn_rate_adjust_interval):
lr_per_mb.extend([learning_rate] * learn_rate_adjust_interval)
learning_rate *= learn_rate_decrease_factor
lr_schedule = C.learners.learning_parameter_schedule(lr_per_mb, epoch_size=epoch_size)
mm_schedule = C.learners.momentum_schedule(0.9)
l2_reg_weight = 0.0001 # CNTK L2 regularization is per sample, thus same as Caffe
# Create learner
local_learner = C.learners.nesterov(network['ce'].parameters, lr_schedule, mm_schedule,
l2_regularization_weight=l2_reg_weight)
parameter_learner = C.train.distributed.data_parallel_distributed_learner(
local_learner,
num_quantization_bits=num_quantization_bits,
distributed_after=0)
# Create trainer
return C.train.Trainer(network['output'], (network['ce'], network['pe']), parameter_learner, progress_printer)
# Train and test
def train_and_test(network, trainer, train_source, test_source, minibatch_size, epoch_size, restore, profiling=False):
# define mapping from intput streams to network inputs
input_map = {
network['feature']: train_source.streams.features,
network['label']: train_source.streams.labels
}
if profiling:
C.debugging.start_profiler(sync_gpu=True)
C.train.training_session(
trainer=trainer, mb_source=train_source,
model_inputs_to_streams=input_map,
mb_size=minibatch_size,
progress_frequency=epoch_size,
checkpoint_config=C.train.CheckpointConfig(frequency=epoch_size, filename=os.path.join(model_path, model_name), restore=restore),
test_config=C.train.TestConfig(test_source, minibatch_size=minibatch_size)
).train()
if profiling:
C.debugging.stop_profiler()
# Train and evaluate the network.
def inception_v3_train_and_eval(train_data, test_data, num_quantization_bits=32, epoch_size=1281167, max_epochs=300, minibatch_size=None,
restore=True, log_to_file=None, num_mbs_per_log=100, gen_heartbeat=False, scale_up=False, profiling=False):
C.debugging.set_computation_network_trace_level(0)
# NOTE: scaling up minibatch_size increases sample throughput. In 8-GPU machine,
# ResNet110 samples-per-second is ~7x of single GPU, comparing to ~3x without scaling
# up. However, bigger minibatch size on the same number of samples means less updates,
# thus leads to higher training error. This is a trade-off of speed and accuracy
if minibatch_size is None:
mb_size = 32 * (C.train.distributed.Communicator.num_workers() if scale_up else 1)
else:
mb_size = minibatch_size
progress_printer = C.logging.ProgressPrinter(
freq=num_mbs_per_log,
tag='Training',
log_to_file=log_to_file,
rank=C.train.distributed.Communicator.rank(),
gen_heartbeat=gen_heartbeat,
num_epochs=max_epochs)
network = create_inception_v3()
trainer = create_trainer(network, epoch_size, max_epochs, mb_size, num_quantization_bits, progress_printer)
train_source = create_image_mb_source(train_data, True, total_number_of_samples=max_epochs * epoch_size)
test_source = create_image_mb_source(test_data, False, total_number_of_samples=C.io.FULL_DATA_SWEEP)
train_and_test(network, trainer, train_source, test_source, mb_size, epoch_size, restore, profiling)
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-datadir', '--datadir', help='Data directory where the ImageNet dataset is located', required=False, default=data_path)
parser.add_argument('-configdir', '--configdir', help='Config directory where this python script is located', required=False, default=config_path)
parser.add_argument('-outputdir', '--outputdir', help='Output directory for checkpoints and models', required=False, default=None)
parser.add_argument('-logdir', '--logdir', help='Log file', required=False, default=None)
parser.add_argument('-n', '--num_epochs', help='Total number of epochs to train', type=int, required=False, default='300')
parser.add_argument('-m', '--minibatch_size', help='Minibatch size', type=int, required=False, default='64')
parser.add_argument('-e', '--epoch_size', help='Epoch size', type=int, required=False, default='1281167')
parser.add_argument('-q', '--quantized_bits', help='Number of quantized bits used for gradient aggregation', type=int, required=False, default='32')
parser.add_argument('-s', '--scale_up', help='scale up minibatch size with #workers for better parallelism', type=bool, required=False, default='True')
parser.add_argument('-r', '--restart', help='Indicating whether to restart from scratch (instead of restart from checkpoint file by default)', action='store_true')
parser.add_argument('-device', '--device', type=int, help="Force to run the script on a specified device", required=False, default=None)
parser.add_argument('-profile', '--profile', help="Turn on profiling", action='store_true', default=False)
args = vars(parser.parse_args())
if args['outputdir'] is not None:
model_path = args['outputdir'] + "/models"
if args['logdir'] is not None:
log_dir = args['logdir']
if args['device'] is not None:
C.device.try_set_default_device(C.device.gpu(args['device']))
data_path = args['datadir']
if not os.path.isdir(data_path):
raise RuntimeError("Directory %s does not exist" % data_path)
os.chdir(data_path)
train_data = os.path.join(data_path, 'train_map.txt')
test_data = os.path.join(data_path, 'val_map.txt')
inception_v3_train_and_eval(train_data, test_data,
epoch_size=args['epoch_size'],
num_quantization_bits=args['quantized_bits'],
max_epochs=args['num_epochs'],
minibatch_size=args["minibatch_size"],
restore=not args['restart'],
log_to_file=args['logdir'],
num_mbs_per_log=100,
gen_heartbeat=True,
scale_up=bool(args['scale_up']))
# Must call MPI finalize when process exit without exceptions
C.train.distributed.Communicator.finalize()