-
-
Notifications
You must be signed in to change notification settings - Fork 318
/
Copy pathmnist_distributed.py
70 lines (64 loc) · 2.5 KB
/
mnist_distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from hyperas import optim
from hyperas.distributions import quniform, uniform
from hyperopt import STATUS_OK, tpe, mongoexp
import keras
from keras.layers import Dense, Dropout
from keras.models import Sequential
from keras.optimizers import RMSprop
from keras.datasets import mnist
import tempfile
def data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
num_classes = 10
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
return x_train, y_train, x_test, y_test
def create_model(x_train, y_train, x_test, y_test):
"""
Create your model...
"""
layer_1_size = {{quniform(12, 256, 4)}}
l1_dropout = {{uniform(0.001, 0.7)}}
params = {
'l1_size': layer_1_size,
'l1_dropout': l1_dropout
}
num_classes = 10
model = Sequential()
model.add(Dense(int(layer_1_size), activation='relu'))
model.add(Dropout(l1_dropout))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_test, y_test))
score, acc = model.evaluate(x_test, y_test, verbose=0)
out = {
'loss': -acc,
'score': score,
'status': STATUS_OK,
'model_params': params,
}
# optionally store a dump of your model here so you can get it from the database later
temp_name = tempfile.gettempdir()+'/'+next(tempfile._get_candidate_names()) + '.h5'
model.save(temp_name)
with open(temp_name, 'rb') as infile:
model_bytes = infile.read()
out['model_serial'] = model_bytes
return out
if __name__ == "__main__":
trials = mongoexp.MongoTrials('mongo://username:[email protected]:27017/jobs/jobs', exp_key='mnist_test')
best_run, best_model = optim.minimize(model=create_model,
data=data,
algo=tpe.suggest,
max_evals=10,
trials=trials,
keep_temp=True) # this last bit is important
print("Best performing model chosen hyper-parameters:")
print(best_run)