-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsecurity.py
126 lines (95 loc) · 3.59 KB
/
security.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import face_recognition
from cv2 import cv2
import numpy as np
import pyfirmata
from pyfirmata import Arduino
import time
import os
from datetime import datetime
board = Arduino('COM3')
face_cascade = cv2.CascadeClassifier(
'cascades/data/haarcascade_frontalface_alt2.xml')
video_capture = cv2.VideoCapture(0)
log = 'E:\PROJECTS\FACIAL RECOGNITION\logs.txt'
path = 'E:\PROJECTS\FACIAL RECOGNITION\Database'
peopleImg = []
known_face_names = []
myList = os.listdir(path)
print(myList)
for cl in myList:
curimg = cv2.imread(f'{path}/{cl}') # politicians image/Amit_Shah.jpg
peopleImg.append(curimg)
# Here 0 depicts the first part of image name
known_face_names.append(os.path.splitext(cl)[0])
# print(peopleName)
def resize(img, size):
width = int(img.shape[1]*size)
height = int(img.shape[0] * size)
dimension = (width, height)
return cv2.resize(img, dimension, interpolation=cv2.INTER_AREA)
def findEncoding(images):
imgEncodings = []
for img in images:
img = resize(img, 0.50)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encodeimg = face_recognition.face_encodings(img)[0]
imgEncodings.append(encodeimg)
return imgEncodings
known_face_encodings = findEncoding(peopleImg)
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
ret, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
if process_this_frame:
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(
rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(
known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(
known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
if name == "Unknown":
board.digital[13].write(1)
time.sleep(2)
board.digital[13].write(0)
time.sleep(1)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(
gray, scaleFactor=1.5, minNeighbors=5)
for (x, y, w, h) in faces:
roi_gray = gray[y:y+h, x:x+h]
img_item = "unknown person.png"
cv2.imwrite(img_item, roi_gray)
else:
now = datetime.now()
entry = name + " entered the proximity at " + now
with open(log, 'a') as f:
f.writelines('\n'.join(entry))
process_this_frame = not process_this_frame
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 2)
cv2.rectangle(frame, (left, bottom - 35),
(right, bottom), (0, 255, 0), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6),
font, 1.0, (0, 0, 0), 1)
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()