diff --git a/galleries/users_explain/text/text_intro.py b/galleries/users_explain/text/text_intro.py index 3b8a66f1c98e..29210021369c 100644 --- a/galleries/users_explain/text/text_intro.py +++ b/galleries/users_explain/text/text_intro.py @@ -8,8 +8,6 @@ Text in Matplotlib ================== -Introduction to plotting and working with text in Matplotlib. - Matplotlib has extensive text support, including support for mathematical expressions, truetype support for raster and vector outputs, newline separated text with arbitrary @@ -124,8 +122,8 @@ fig, ax = plt.subplots(figsize=(5, 3)) fig.subplots_adjust(bottom=0.15, left=0.2) ax.plot(x1, y1) -ax.set_xlabel('Time [s]') -ax.set_ylabel('Damped oscillation [V]') +ax.set_xlabel('Time (s)') +ax.set_ylabel('Damped oscillation (V)') plt.show() @@ -137,26 +135,26 @@ fig, ax = plt.subplots(figsize=(5, 3)) fig.subplots_adjust(bottom=0.15, left=0.2) ax.plot(x1, y1*10000) -ax.set_xlabel('Time [s]') -ax.set_ylabel('Damped oscillation [V]') +ax.set_xlabel('Time (s)') +ax.set_ylabel('Damped oscillation (V)') plt.show() # %% # If you want to move the labels, you can specify the *labelpad* keyword # argument, where the value is points (1/72", the same unit used to specify -# fontsizes). +# font sizes). fig, ax = plt.subplots(figsize=(5, 3)) fig.subplots_adjust(bottom=0.15, left=0.2) ax.plot(x1, y1*10000) -ax.set_xlabel('Time [s]') -ax.set_ylabel('Damped oscillation [V]', labelpad=18) +ax.set_xlabel('Time (s)') +ax.set_ylabel('Damped oscillation (V)', labelpad=18) plt.show() # %% -# Or, the labels accept all the `.Text` keyword arguments, including +# Alternatively, the labels accept all the `.Text` keyword arguments, including # *position*, via which we can manually specify the label positions. Here we # put the xlabel to the far left of the axis. Note, that the y-coordinate of # this position has no effect - to adjust the y-position we need to use the @@ -165,15 +163,15 @@ fig, ax = plt.subplots(figsize=(5, 3)) fig.subplots_adjust(bottom=0.15, left=0.2) ax.plot(x1, y1) -ax.set_xlabel('Time [s]', position=(0., 1e6), horizontalalignment='left') -ax.set_ylabel('Damped oscillation [V]') +ax.set_xlabel('Time (s)', position=(0., 1e6), horizontalalignment='left') +ax.set_ylabel('Damped oscillation (V)') plt.show() # %% # All the labelling in this tutorial can be changed by manipulating the # `matplotlib.font_manager.FontProperties` method, or by named keyword -# arguments to `~matplotlib.axes.Axes.set_xlabel` +# arguments to `~matplotlib.axes.Axes.set_xlabel`. from matplotlib.font_manager import FontProperties @@ -182,8 +180,8 @@ fig, ax = plt.subplots(figsize=(5, 3)) fig.subplots_adjust(bottom=0.15, left=0.2) ax.plot(x1, y1) -ax.set_xlabel('Time [s]', fontsize='large', fontweight='bold') -ax.set_ylabel('Damped oscillation [V]', fontproperties=font) +ax.set_xlabel('Time (s)', fontsize='large', fontweight='bold') +ax.set_ylabel('Damped oscillation (V)', fontproperties=font) plt.show() @@ -194,8 +192,8 @@ fig, ax = plt.subplots(figsize=(5, 3)) fig.subplots_adjust(bottom=0.2, left=0.2) ax.plot(x1, np.cumsum(y1**2)) -ax.set_xlabel('Time [s] \n This was a long experiment') -ax.set_ylabel(r'$\int\ Y^2\ dt\ \ [V^2 s]$') +ax.set_xlabel('Time (s) \n This was a long experiment') +ax.set_ylabel(r'$\int\ Y^2\ dt\ \ (V^2 s)$') plt.show() @@ -204,14 +202,14 @@ # ====== # # Subplot titles are set in much the same way as labels, but there is -# the *loc* keyword arguments that can change the position and justification -# from the default value of ``loc=center``. +# the *loc* keyword argument that can change the position and justification +# (the default value is "center"). fig, axs = plt.subplots(3, 1, figsize=(5, 6), tight_layout=True) locs = ['center', 'left', 'right'] for ax, loc in zip(axs, locs): ax.plot(x1, y1) - ax.set_title('Title with loc at '+loc, loc=loc) + ax.set_title('Title with loc at ' + loc, loc=loc) plt.show() # %% @@ -237,7 +235,7 @@ # Terminology # ^^^^^^^^^^^ # -# *Axes* have an `matplotlib.axis.Axis` object for the ``ax.xaxis`` and +# *Axes* have a `matplotlib.axis.Axis` object for the ``ax.xaxis`` and # ``ax.yaxis`` that contain the information about how the labels in the axis # are laid out. # @@ -255,9 +253,9 @@ # # It is often convenient to simply define the # tick values, and sometimes the tick labels, overriding the default -# locators and formatters. This is discouraged because it breaks interactive -# navigation of the plot. It also can reset the axis limits: note that -# the second plot has the ticks we asked for, including ones that are +# locators and formatters. However, this is discouraged because it breaks +# interactive navigation of the plot. It also can reset the axis limits: note +# that the second plot has the ticks we asked for, including ones that are # well outside the automatic view limits. fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True) @@ -283,7 +281,7 @@ plt.show() # %% -# Tick Locators and Formatters +# Tick locators and formatters # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # Instead of making a list of all the ticklabels, we could have @@ -317,14 +315,14 @@ # %% # The default formatter is the `matplotlib.ticker.MaxNLocator` called as -# ``ticker.MaxNLocator(self, nbins='auto', steps=[1, 2, 2.5, 5, 10])`` -# The *steps* keyword contains a list of multiples that can be used for -# tick values. i.e. in this case, 2, 4, 6 would be acceptable ticks, +# ``ticker.MaxNLocator(self, nbins='auto', steps=[1, 2, 2.5, 5, 10])``. +# The ``steps`` argument contains a list of multiples that can be used for +# tick values. In this case, 2, 4, 6 would be acceptable ticks, # as would 20, 40, 60 or 0.2, 0.4, 0.6. However, 3, 6, 9 would not be # acceptable because 3 doesn't appear in the list of steps. # -# ``nbins=auto`` uses an algorithm to determine how many ticks will -# be acceptable based on how long the axis is. The fontsize of the +# Setting ``nbins=auto`` uses an algorithm to determine how many ticks will +# be acceptable based on the axis length. The fontsize of the # ticklabel is taken into account, but the length of the tick string # is not (because it's not yet known.) In the bottom row, the # ticklabels are quite large, so we set ``nbins=4`` to make the @@ -382,11 +380,11 @@ def formatoddticks(x, pos): # Matplotlib can accept `datetime.datetime` and `numpy.datetime64` # objects as plotting arguments. Dates and times require special # formatting, which can often benefit from manual intervention. In -# order to help, dates have special Locators and Formatters, +# order to help, dates have special locators and formatters, # defined in the `matplotlib.dates` module. # -# A simple example is as follows. Note how we have to rotate the -# tick labels so that they don't over-run each other. +# The following simple example illustrates this concept. Note how we +# rotate the tick labels so that they don't overlap. import datetime @@ -399,11 +397,10 @@ def formatoddticks(x, pos): plt.show() # %% -# We can pass a format to `matplotlib.dates.DateFormatter`. Also note that the -# 29th and the next month are very close together. We can fix this by using -# the `.dates.DayLocator` class, which allows us to specify a list of days of -# the month to use. Similar formatters are listed in the `matplotlib.dates` -# module. +# We can pass a format to `matplotlib.dates.DateFormatter`. If two tick labels +# are very close together, we can use the `.dates.DayLocator` class, which +# allows us to specify a list of days of the month to use. Similar formatters +# are listed in the `matplotlib.dates` module. import matplotlib.dates as mdates @@ -418,9 +415,9 @@ def formatoddticks(x, pos): plt.show() # %% -# Legends and Annotations +# Legends and annotations # ======================= # -# - Legends: :ref:`legend_guide` -# - Annotations: :ref:`annotations` +# - :ref:`legend_guide` +# - :ref:`annotations` #