forked from Ripser/ripser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathripser.cpp
957 lines (792 loc) · 30.2 KB
/
ripser.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
/*
Ripser: a lean C++ code for computation of Vietoris-Rips persistence barcodes
Copyright 2015-2016 Ulrich Bauer.
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//#define ASSEMBLE_REDUCTION_MATRIX
//#define USE_COEFFICIENTS
//#define INDICATE_PROGRESS
#define PRINT_PERSISTENCE_PAIRS
//#define USE_GOOGLE_HASHMAP
#include <algorithm>
#include <cassert>
#include <cmath>
#include <fstream>
#include <iostream>
#include <numeric>
#include <queue>
#include <sstream>
#include <unordered_map>
#ifdef USE_GOOGLE_HASHMAP
#include <sparsehash/sparse_hash_map>
template <class Key, class T> class hash_map : public google::sparse_hash_map<Key, T> {
public:
inline void reserve(size_t hint) { this->resize(hint); }
};
#else
template <class Key, class T> class hash_map : public std::unordered_map<Key, T> {};
#endif
typedef float value_t;
// typedef uint16_t value_t;
typedef int64_t index_t;
typedef int16_t coefficient_t;
class binomial_coeff_table {
std::vector<std::vector<index_t>> B;
index_t n_max, k_max;
public:
binomial_coeff_table(index_t n, index_t k) {
n_max = n;
k_max = k;
B.resize(n + 1);
for (index_t i = 0; i <= n; i++) {
B[i].resize(k + 1);
for (index_t j = 0; j <= std::min(i, k); j++) {
if (j == 0 || j == i)
B[i][j] = 1;
else
B[i][j] = B[i - 1][j - 1] + B[i - 1][j];
}
}
}
index_t operator()(index_t n, index_t k) const {
assert(n <= n_max);
assert(k <= k_max);
return B[n][k];
}
};
bool is_prime(const coefficient_t n) {
if (!(n & 1) || n < 2) return n == 2;
for (coefficient_t p = 3, q = n / p, r = n % p; p <= q; p += 2, q = n / p, r = n % p)
if (!r) return false;
return true;
}
std::vector<coefficient_t> multiplicative_inverse_vector(const coefficient_t m) {
std::vector<coefficient_t> inverse(m);
inverse[1] = 1;
// m = a * (m / a) + m % a
// Multipying with inverse(a) * inverse(m % a):
// 0 = inverse(m % a) * (m / a) + inverse(a) (mod m)
for (coefficient_t a = 2; a < m; ++a) inverse[a] = m - (inverse[m % a] * (m / a)) % m;
return inverse;
}
index_t get_next_vertex(index_t& v, const index_t idx, const index_t k, const binomial_coeff_table& binomial_coeff) {
if (binomial_coeff(v, k) > idx) {
index_t count = v;
while (count > 0) {
index_t i = v;
index_t step = count >> 1;
i -= step;
if (binomial_coeff(i, k) > idx) {
v = --i;
count -= step + 1;
} else
count = step;
}
}
assert(binomial_coeff(v, k) <= idx);
assert(binomial_coeff(v + 1, k) > idx);
return v;
}
template <typename OutputIterator>
OutputIterator get_simplex_vertices(index_t idx, const index_t dim, index_t v,
const binomial_coeff_table& binomial_coeff, OutputIterator out) {
--v;
for (index_t k = dim + 1; k > 0; --k) {
get_next_vertex(v, idx, k, binomial_coeff);
*out++ = v;
idx -= binomial_coeff(v, k);
}
return out;
}
std::vector<index_t> vertices_of_simplex(const index_t simplex_index, const index_t dim, const index_t n,
const binomial_coeff_table& binomial_coeff) {
std::vector<index_t> vertices;
get_simplex_vertices(simplex_index, dim, n, binomial_coeff, std::back_inserter(vertices));
return vertices;
}
#ifdef USE_COEFFICIENTS
struct entry_t {
index_t index : 8 * (sizeof(index_t) - sizeof(coefficient_t));
coefficient_t coefficient;
entry_t(index_t _index, coefficient_t _coefficient) : index(_index), coefficient(_coefficient) {}
entry_t(index_t _index) : index(_index), coefficient(1) {}
entry_t() : index(0), coefficient(1) {}
} __attribute__((packed));
static_assert(sizeof(entry_t) == sizeof(index_t), "size of entry_t is not the same as index_t");
entry_t make_entry(index_t _index, coefficient_t _coefficient) { return entry_t(_index, _coefficient); }
index_t get_index(entry_t e) { return e.index; }
index_t get_coefficient(entry_t e) { return e.coefficient; }
void set_coefficient(entry_t& e, const coefficient_t c) { e.coefficient = c; }
bool operator==(const entry_t& e1, const entry_t& e2) {
return get_index(e1) == get_index(e2) && get_coefficient(e1) == get_coefficient(e2);
}
std::ostream& operator<<(std::ostream& stream, const entry_t& e) {
stream << get_index(e) << ":" << get_coefficient(e);
return stream;
}
#else
typedef index_t entry_t;
const index_t get_index(entry_t i) { return i; }
index_t get_coefficient(entry_t i) { return 1; }
entry_t make_entry(index_t _index, coefficient_t _value) { return entry_t(_index); }
void set_coefficient(index_t& e, const coefficient_t c) {}
#endif
const entry_t& get_entry(const entry_t& e) { return e; }
template <typename Entry> struct smaller_index {
bool operator()(const Entry& a, const Entry& b) { return get_index(a) < get_index(b); }
};
class diameter_index_t : public std::pair<value_t, index_t> {
public:
diameter_index_t() : std::pair<value_t, index_t>() {}
diameter_index_t(std::pair<value_t, index_t> p) : std::pair<value_t, index_t>(p) {}
};
value_t get_diameter(diameter_index_t i) { return i.first; }
index_t get_index(diameter_index_t i) { return i.second; }
class diameter_entry_t : public std::pair<value_t, entry_t> {
public:
diameter_entry_t(std::pair<value_t, entry_t> p) : std::pair<value_t, entry_t>(p) {}
diameter_entry_t(entry_t e) : std::pair<value_t, entry_t>(0, e) {}
diameter_entry_t() : diameter_entry_t(0) {}
diameter_entry_t(value_t _diameter, index_t _index, coefficient_t _coefficient)
: std::pair<value_t, entry_t>(_diameter, make_entry(_index, _coefficient)) {}
diameter_entry_t(diameter_index_t _diameter_index, coefficient_t _coefficient)
: std::pair<value_t, entry_t>(get_diameter(_diameter_index),
make_entry(get_index(_diameter_index), _coefficient)) {}
diameter_entry_t(diameter_index_t _diameter_index) : diameter_entry_t(_diameter_index, 1) {}
};
const entry_t& get_entry(const diameter_entry_t& p) { return p.second; }
entry_t& get_entry(diameter_entry_t& p) { return p.second; }
const index_t get_index(const diameter_entry_t& p) { return get_index(get_entry(p)); }
const coefficient_t get_coefficient(const diameter_entry_t& p) { return get_coefficient(get_entry(p)); }
const value_t& get_diameter(const diameter_entry_t& p) { return p.first; }
void set_coefficient(diameter_entry_t& p, const coefficient_t c) { set_coefficient(get_entry(p), c); }
template <typename Entry> struct greater_diameter_or_smaller_index {
bool operator()(const Entry& a, const Entry& b) {
return (get_diameter(a) > get_diameter(b)) ||
((get_diameter(a) == get_diameter(b)) && (get_index(a) < get_index(b)));
}
};
template <typename DistanceMatrix> class rips_filtration_comparator {
public:
const DistanceMatrix& dist;
const index_t dim;
private:
mutable std::vector<index_t> vertices;
const binomial_coeff_table& binomial_coeff;
public:
rips_filtration_comparator(const DistanceMatrix& _dist, const index_t _dim,
const binomial_coeff_table& _binomial_coeff)
: dist(_dist), dim(_dim), vertices(_dim + 1), binomial_coeff(_binomial_coeff){};
value_t diameter(const index_t index) const {
value_t diam = 0;
get_simplex_vertices(index, dim, dist.size(), binomial_coeff, vertices.begin());
for (index_t i = 0; i <= dim; ++i)
for (index_t j = 0; j < i; ++j) { diam = std::max(diam, dist(vertices[i], vertices[j])); }
return diam;
}
bool operator()(const index_t a, const index_t b) const {
assert(a < binomial_coeff(dist.size(), dim + 1));
assert(b < binomial_coeff(dist.size(), dim + 1));
return greater_diameter_or_smaller_index<diameter_index_t>()(diameter_index_t(diameter(a), a),
diameter_index_t(diameter(b), b));
}
template <typename Entry> bool operator()(const Entry& a, const Entry& b) const {
return operator()(get_index(a), get_index(b));
}
};
template <class DistanceMatrix> class simplex_coboundary_enumerator {
private:
index_t idx_below, idx_above, v, k;
std::vector<index_t> vertices;
const diameter_entry_t simplex;
const coefficient_t modulus;
const DistanceMatrix& dist;
const binomial_coeff_table& binomial_coeff;
public:
simplex_coboundary_enumerator(const diameter_entry_t _simplex, index_t _dim, index_t _n,
const coefficient_t _modulus, const DistanceMatrix& _dist,
const binomial_coeff_table& _binomial_coeff)
: simplex(_simplex), idx_below(get_index(_simplex)), idx_above(0), v(_n - 1), k(_dim + 1), modulus(_modulus),
binomial_coeff(_binomial_coeff), dist(_dist), vertices(_dim + 1) {
get_simplex_vertices(get_index(_simplex), _dim, _n, binomial_coeff, vertices.begin());
}
bool has_next() {
while ((v != -1) && (binomial_coeff(v, k) <= idx_below)) {
idx_below -= binomial_coeff(v, k);
idx_above += binomial_coeff(v, k + 1);
--v;
--k;
assert(k != -1);
}
return v != -1;
}
index_t next_index() { return idx_above + binomial_coeff(v--, k + 1) + idx_below; }
diameter_entry_t next() {
value_t coface_diameter = get_diameter(simplex);
for (index_t w : vertices) coface_diameter = std::max(coface_diameter, dist(v, w));
coefficient_t coface_coefficient = (k & 1 ? -1 + modulus : 1) * get_coefficient(simplex) % modulus;
return diameter_entry_t(coface_diameter, idx_above + binomial_coeff(v--, k + 1) + idx_below,
coface_coefficient);
}
};
enum compressed_matrix_layout { LOWER_TRIANGULAR, UPPER_TRIANGULAR };
template <compressed_matrix_layout Layout> class compressed_distance_matrix {
public:
std::vector<value_t> distances;
std::vector<value_t*> rows;
void init_rows();
compressed_distance_matrix(std::vector<value_t>&& _distances)
: distances(std::move(_distances)), rows((1 + std::sqrt(1 + 8 * distances.size())) / 2) {
assert(distances.size() == size() * (size() - 1) / 2);
init_rows();
}
template <typename DistanceMatrix>
compressed_distance_matrix(const DistanceMatrix& mat)
: distances(mat.size() * (mat.size() - 1) / 2), rows(mat.size()) {
init_rows();
for (index_t i = 1; i < size(); ++i)
for (index_t j = 0; j < i; ++j) rows[i][j] = mat(i, j);
}
value_t operator()(const index_t i, const index_t j) const;
size_t size() const { return rows.size(); }
};
template <> void compressed_distance_matrix<LOWER_TRIANGULAR>::init_rows() {
value_t* pointer = &distances[0];
for (index_t i = 1; i < size(); ++i) {
rows[i] = pointer;
pointer += i;
}
}
template <> void compressed_distance_matrix<UPPER_TRIANGULAR>::init_rows() {
value_t* pointer = &distances[0] - 1;
for (index_t i = 0; i < size() - 1; ++i) {
rows[i] = pointer;
pointer += size() - i - 2;
}
}
template <> value_t compressed_distance_matrix<UPPER_TRIANGULAR>::operator()(index_t i, index_t j) const {
if (i > j) std::swap(i, j);
return i == j ? 0 : rows[i][j];
}
template <> value_t compressed_distance_matrix<LOWER_TRIANGULAR>::operator()(index_t i, index_t j) const {
if (i > j) std::swap(i, j);
return i == j ? 0 : rows[j][i];
}
typedef compressed_distance_matrix<LOWER_TRIANGULAR> compressed_lower_distance_matrix;
typedef compressed_distance_matrix<UPPER_TRIANGULAR> compressed_upper_distance_matrix;
class euclidean_distance_matrix {
public:
std::vector<std::vector<value_t>> points;
euclidean_distance_matrix(std::vector<std::vector<value_t>>&& _points) : points(std::move(_points)) {}
value_t operator()(const index_t i, const index_t j) const {
return std::sqrt(std::inner_product(points[i].begin(), points[i].end(), points[j].begin(), value_t(),
std::plus<value_t>(),
[](value_t u, value_t v) { return (u - v) * (u - v); }));
}
size_t size() const { return points.size(); }
};
class union_find {
std::vector<index_t> parent;
std::vector<uint8_t> rank;
public:
union_find(index_t n) : parent(n), rank(n, 0) {
for (index_t i = 0; i < n; ++i) parent[i] = i;
}
index_t find(index_t x) {
index_t y = x, z = parent[y];
while (z != y) {
y = z;
z = parent[y];
}
y = parent[x];
while (z != y) {
parent[x] = z;
x = y;
y = parent[x];
}
return z;
}
void link(index_t x, index_t y) {
x = find(x);
y = find(y);
if (x == y) return;
if (rank[x] > rank[y])
parent[y] = x;
else {
parent[x] = y;
if (rank[x] == rank[y]) ++rank[y];
}
}
};
template <typename Heap> diameter_entry_t pop_pivot(Heap& column, coefficient_t modulus) {
if (column.empty())
return diameter_entry_t(-1);
else {
auto pivot = column.top();
#ifdef USE_COEFFICIENTS
coefficient_t coefficient = 0;
do {
coefficient = (coefficient + get_coefficient(column.top())) % modulus;
column.pop();
if (coefficient == 0) {
if (column.empty())
return diameter_entry_t(-1);
else
pivot = column.top();
}
} while (!column.empty() && get_index(column.top()) == get_index(pivot));
if (get_index(pivot) != -1) { set_coefficient(pivot, coefficient); }
#else
column.pop();
while (!column.empty() && get_index(column.top()) == get_index(pivot)) {
column.pop();
if (column.empty())
return diameter_entry_t(-1);
else {
pivot = column.top();
column.pop();
}
}
#endif
return pivot;
}
}
template <typename Heap> diameter_entry_t get_pivot(Heap& column, coefficient_t modulus) {
diameter_entry_t result = pop_pivot(column, modulus);
if (get_index(result) != -1) column.push(result);
return result;
}
template <typename ValueType> class compressed_sparse_matrix {
std::vector<size_t> bounds;
std::vector<ValueType> entries;
public:
size_t size() const { return bounds.size(); }
typename std::vector<ValueType>::const_iterator cbegin(size_t index) const {
assert(index < size());
return index == 0 ? entries.cbegin() : entries.cbegin() + bounds[index - 1];
}
typename std::vector<ValueType>::const_iterator cend(size_t index) const {
assert(index < size());
return entries.cbegin() + bounds[index];
}
template <typename Iterator> void append_column(Iterator begin, Iterator end) {
for (Iterator it = begin; it != end; ++it) { entries.push_back(*it); }
bounds.push_back(entries.size());
}
void append_column() { bounds.push_back(entries.size()); }
void push_back(ValueType e) {
assert(0 < size());
entries.push_back(e);
++bounds.back();
}
void pop_back() {
assert(0 < size());
entries.pop_back();
--bounds.back();
}
template <typename Collection> void append_column(const Collection collection) {
append_column(collection.cbegin(), collection.cend());
}
};
template <typename Heap> void push_entry(Heap& column, index_t i, coefficient_t c, value_t diameter) {
entry_t e = make_entry(i, c);
column.push(std::make_pair(diameter, e));
}
template <typename Comparator>
void assemble_columns_to_reduce(std::vector<diameter_index_t>& columns_to_reduce,
hash_map<index_t, index_t>& pivot_column_index, const Comparator& comp, index_t dim,
index_t n, value_t threshold, const binomial_coeff_table& binomial_coeff) {
index_t num_simplices = binomial_coeff(n, dim + 2);
columns_to_reduce.clear();
#ifdef INDICATE_PROGRESS
std::cout << "\033[K"
<< "assembling " << num_simplices << " columns" << std::flush << "\r";
#endif
for (index_t index = 0; index < num_simplices; ++index) {
if (pivot_column_index.find(index) == pivot_column_index.end()) {
value_t diameter = comp.diameter(index);
if (diameter <= threshold) columns_to_reduce.push_back(std::make_pair(diameter, index));
#ifdef INDICATE_PROGRESS
if ((index + 1) % 1000 == 0)
std::cout << "\033[K"
<< "assembled " << columns_to_reduce.size() << " out of " << (index + 1) << "/"
<< num_simplices << " columns" << std::flush << "\r";
#endif
}
}
#ifdef INDICATE_PROGRESS
std::cout << "\033[K"
<< "sorting " << num_simplices << " columns" << std::flush << "\r";
#endif
std::sort(columns_to_reduce.begin(), columns_to_reduce.end(),
greater_diameter_or_smaller_index<diameter_index_t>());
#ifdef INDICATE_PROGRESS
std::cout << "\033[K";
#endif
}
template <typename DistanceMatrix, typename ComparatorCofaces, typename Comparator>
void compute_pairs(std::vector<diameter_index_t>& columns_to_reduce, hash_map<index_t, index_t>& pivot_column_index,
index_t dim, index_t n, value_t threshold, coefficient_t modulus,
const std::vector<coefficient_t>& multiplicative_inverse, const DistanceMatrix& dist,
const ComparatorCofaces& comp, const Comparator& comp_prev,
const binomial_coeff_table& binomial_coeff) {
#ifdef PRINT_PERSISTENCE_PAIRS
std::cout << "persistence intervals in dim " << dim << ":" << std::endl;
#endif
#ifdef ASSEMBLE_REDUCTION_MATRIX
compressed_sparse_matrix<diameter_entry_t> reduction_coefficients;
#else
#ifdef USE_COEFFICIENTS
std::vector<diameter_entry_t> reduction_coefficients;
#endif
#endif
std::vector<diameter_entry_t> coface_entries;
for (index_t i = 0; i < columns_to_reduce.size(); ++i) {
auto column_to_reduce = columns_to_reduce[i];
#ifdef ASSEMBLE_REDUCTION_MATRIX
std::priority_queue<diameter_entry_t, std::vector<diameter_entry_t>, smaller_index<diameter_entry_t>>
reduction_column;
#endif
std::priority_queue<diameter_entry_t, std::vector<diameter_entry_t>,
greater_diameter_or_smaller_index<diameter_entry_t>>
working_coboundary;
value_t diameter = get_diameter(column_to_reduce);
#ifdef INDICATE_PROGRESS
if ((i + 1) % 1000 == 0)
std::cout << "\033[K"
<< "reducing column " << i + 1 << "/" << columns_to_reduce.size() << " (diameter " << diameter
<< ")" << std::flush << "\r";
#endif
index_t j = i;
// start with a dummy pivot entry with coefficient -1 in order to initialize
// working_coboundary with the coboundary of the simplex with index column_to_reduce
diameter_entry_t pivot(0, -1, -1 + modulus);
#ifdef ASSEMBLE_REDUCTION_MATRIX
// initialize reduction_coefficients as identity matrix
reduction_coefficients.append_column();
reduction_coefficients.push_back(diameter_entry_t(column_to_reduce, 1));
#else
#ifdef USE_COEFFICIENTS
reduction_coefficients.push_back(diameter_entry_t(column_to_reduce, 1));
#endif
#endif
bool might_be_apparent_pair = (i == j);
do {
const coefficient_t factor = modulus - get_coefficient(pivot);
#ifdef ASSEMBLE_REDUCTION_MATRIX
auto coeffs_begin = reduction_coefficients.cbegin(j), coeffs_end = reduction_coefficients.cend(j);
#else
#ifdef USE_COEFFICIENTS
auto coeffs_begin = &reduction_coefficients[j], coeffs_end = &reduction_coefficients[j] + 1;
#else
auto coeffs_begin = &columns_to_reduce[j], coeffs_end = &columns_to_reduce[j] + 1;
#endif
#endif
for (auto it = coeffs_begin; it != coeffs_end; ++it) {
diameter_entry_t simplex = *it;
set_coefficient(simplex, get_coefficient(simplex) * factor % modulus);
#ifdef ASSEMBLE_REDUCTION_MATRIX
reduction_column.push(simplex);
#endif
coface_entries.clear();
simplex_coboundary_enumerator<decltype(dist)> cofaces(simplex, dim, n, modulus, dist, binomial_coeff);
while (cofaces.has_next()) {
diameter_entry_t coface = cofaces.next();
if (get_diameter(coface) <= threshold) {
coface_entries.push_back(coface);
if (might_be_apparent_pair && (get_diameter(simplex) == get_diameter(coface))) {
if (pivot_column_index.find(get_index(coface)) == pivot_column_index.end()) {
pivot = coface;
goto found_persistence_pair;
}
might_be_apparent_pair = false;
}
}
}
for (auto e : coface_entries) working_coboundary.push(e);
}
pivot = get_pivot(working_coboundary, modulus);
if (get_index(pivot) != -1) {
auto pair = pivot_column_index.find(get_index(pivot));
if (pair != pivot_column_index.end()) {
j = pair->second;
continue;
}
} else {
#ifdef PRINT_PERSISTENCE_PAIRS
#ifdef INDICATE_PROGRESS
std::cout << "\033[K";
#endif
std::cout << " [" << diameter << ", )" << std::endl << std::flush;
#endif
break;
}
found_persistence_pair:
#ifdef PRINT_PERSISTENCE_PAIRS
value_t death = get_diameter(pivot);
if (diameter != death) {
#ifdef INDICATE_PROGRESS
std::cout << "\033[K";
#endif
std::cout << " [" << diameter << "," << death << ")" << std::endl << std::flush;
}
#endif
pivot_column_index.insert(std::make_pair(get_index(pivot), i));
#ifdef USE_COEFFICIENTS
const coefficient_t inverse = multiplicative_inverse[get_coefficient(pivot)];
#endif
#ifdef ASSEMBLE_REDUCTION_MATRIX
// replace current column of reduction_coefficients (with a single diagonal 1 entry)
// by reduction_column (possibly with a different entry on the diagonal)
reduction_coefficients.pop_back();
while (true) {
diameter_entry_t e = pop_pivot(reduction_column, modulus);
if (get_index(e) == -1) break;
#ifdef USE_COEFFICIENTS
set_coefficient(e, inverse * get_coefficient(e) % modulus);
assert(get_coefficient(e) > 0);
#endif
reduction_coefficients.push_back(e);
}
#else
#ifdef USE_COEFFICIENTS
reduction_coefficients.pop_back();
reduction_coefficients.push_back(diameter_entry_t(column_to_reduce, inverse));
#endif
#endif
break;
} while (true);
}
#ifdef INDICATE_PROGRESS
std::cout << "\033[K";
#endif
}
enum file_format { LOWER_DISTANCE_MATRIX, UPPER_DISTANCE_MATRIX, DISTANCE_MATRIX, POINT_CLOUD, DIPHA };
template <typename T> T read(std::istream& s) {
T result;
s.read(reinterpret_cast<char*>(&result), sizeof(T));
return result; // on little endian: boost::endian::little_to_native(result);
}
compressed_lower_distance_matrix read_point_cloud(std::istream& input_stream) {
std::vector<std::vector<value_t>> points;
std::string line;
value_t value;
while (std::getline(input_stream, line)) {
std::vector<value_t> point;
std::istringstream s(line);
while (s >> value) {
point.push_back(value);
s.ignore();
}
if (!point.empty()) points.push_back(point);
assert(point.size() == points.front().size());
}
euclidean_distance_matrix eucl_dist(std::move(points));
index_t n = eucl_dist.size();
std::cout << "point cloud with " << n << " points in dimension " << eucl_dist.points.front().size() << std::endl;
std::vector<value_t> distances;
for (int i = 0; i < n; ++i)
for (int j = 0; j < i; ++j) distances.push_back(eucl_dist(i, j));
return compressed_lower_distance_matrix(std::move(distances));
}
compressed_lower_distance_matrix read_lower_distance_matrix(std::istream& input_stream) {
std::vector<value_t> distances;
value_t value;
while (input_stream >> value) {
distances.push_back(value);
input_stream.ignore();
}
return compressed_lower_distance_matrix(std::move(distances));
}
compressed_lower_distance_matrix read_upper_distance_matrix(std::istream& input_stream) {
std::vector<value_t> distances;
value_t value;
while (input_stream >> value) {
distances.push_back(value);
input_stream.ignore();
}
return compressed_lower_distance_matrix(compressed_upper_distance_matrix(std::move(distances)));
}
compressed_lower_distance_matrix read_distance_matrix(std::istream& input_stream) {
std::vector<value_t> distances;
std::string line;
value_t value;
for (int i = 0; std::getline(input_stream, line); ++i) {
std::istringstream s(line);
for (int j = 0; j < i && s >> value; ++j) {
distances.push_back(value);
s.ignore();
}
}
return compressed_lower_distance_matrix(std::move(distances));
}
compressed_lower_distance_matrix read_dipha(std::istream& input_stream) {
if (read<int64_t>(input_stream) != 8067171840) {
std::cerr << "input is not a Dipha file (magic number: 8067171840)" << std::endl;
exit(-1);
}
if (read<int64_t>(input_stream) != 7) {
std::cerr << "input is not a Dipha distance matrix (file type: 7)" << std::endl;
exit(-1);
}
index_t n = read<int64_t>(input_stream);
std::vector<value_t> distances;
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
if (i > j)
distances.push_back(read<double>(input_stream));
else
read<double>(input_stream);
return compressed_lower_distance_matrix(std::move(distances));
}
compressed_lower_distance_matrix read_file(std::istream& input_stream, file_format format) {
switch (format) {
case LOWER_DISTANCE_MATRIX:
return read_lower_distance_matrix(input_stream);
case UPPER_DISTANCE_MATRIX:
return read_upper_distance_matrix(input_stream);
case DISTANCE_MATRIX:
return read_distance_matrix(input_stream);
case POINT_CLOUD:
return read_point_cloud(input_stream);
case DIPHA:
return read_dipha(input_stream);
}
}
void print_usage_and_exit(int exit_code) {
std::cerr << "Usage: "
<< "ripser "
<< "[options] [filename]" << std::endl
<< std::endl
<< "Options:" << std::endl
<< std::endl
<< " --help print this screen" << std::endl
<< " --format use the specified file format for the input. Options are:" << std::endl
<< " lower-distance (lower triangular distance matrix; default)" << std::endl
<< " upper-distance (upper triangular distance matrix)" << std::endl
<< " distance (full distance matrix)" << std::endl
<< " point-cloud (point cloud in Euclidean space)" << std::endl
<< " dipha (distance matrix in DIPHA file format)" << std::endl
<< " --dim <k> compute persistent homology up to dimension <k>" << std::endl
<< " --threshold <t> compute Rips complexes up to diameter <t>" << std::endl
#ifdef USE_COEFFICIENTS
<< " --modulus <p> compute homology with coefficients in the prime field Z/<p>Z"
#endif
<< std::endl;
exit(exit_code);
}
int main(int argc, char** argv) {
const char* filename = nullptr;
file_format format = DISTANCE_MATRIX;
index_t dim_max = 1;
value_t threshold = std::numeric_limits<value_t>::max();
#ifdef USE_COEFFICIENTS
coefficient_t modulus = 2;
#else
const coefficient_t modulus = 2;
#endif
for (index_t i = 1; i < argc; ++i) {
const std::string arg(argv[i]);
if (arg == "--help") {
print_usage_and_exit(0);
} else if (arg == "--dim") {
std::string parameter = std::string(argv[++i]);
size_t next_pos;
dim_max = std::stol(parameter, &next_pos);
if (next_pos != parameter.size()) print_usage_and_exit(-1);
} else if (arg == "--threshold") {
std::string parameter = std::string(argv[++i]);
size_t next_pos;
threshold = std::stof(parameter, &next_pos);
if (next_pos != parameter.size()) print_usage_and_exit(-1);
} else if (arg == "--format") {
std::string parameter = std::string(argv[++i]);
if (parameter == "lower-distance")
format = LOWER_DISTANCE_MATRIX;
else if (parameter == "upper-distance")
format = UPPER_DISTANCE_MATRIX;
else if (parameter == "distance")
format = DISTANCE_MATRIX;
else if (parameter == "point-cloud")
format = POINT_CLOUD;
else if (parameter == "dipha")
format = DIPHA;
else
print_usage_and_exit(-1);
#ifdef USE_COEFFICIENTS
} else if (arg == "--modulus") {
std::string parameter = std::string(argv[++i]);
size_t next_pos;
modulus = std::stol(parameter, &next_pos);
if (next_pos != parameter.size() || !is_prime(modulus)) print_usage_and_exit(-1);
#endif
} else {
if (filename) { print_usage_and_exit(-1); }
filename = argv[i];
}
}
std::ifstream file_stream(filename);
if (filename && file_stream.fail()) {
std::cerr << "couldn't open file " << filename << std::endl;
exit(-1);
}
compressed_lower_distance_matrix dist = read_file(filename ? file_stream : std::cin, format);
index_t n = dist.size();
std::cout << "distance matrix with " << n << " points" << std::endl;
auto value_range = std::minmax_element(dist.distances.begin(), dist.distances.end());
std::cout << "value range: [" << *value_range.first << "," << *value_range.second << "]" << std::endl;
dim_max = std::min(dim_max, n - 2);
binomial_coeff_table binomial_coeff(n, dim_max + 2);
std::vector<coefficient_t> multiplicative_inverse(multiplicative_inverse_vector(modulus));
std::vector<diameter_index_t> columns_to_reduce;
{
union_find dset(n);
std::vector<diameter_index_t> edges;
rips_filtration_comparator<decltype(dist)> comp(dist, 1, binomial_coeff);
for (index_t index = binomial_coeff(n, 2); index-- > 0;) {
value_t diameter = comp.diameter(index);
if (diameter <= threshold) edges.push_back(std::make_pair(diameter, index));
}
std::sort(edges.rbegin(), edges.rend(), greater_diameter_or_smaller_index<diameter_index_t>());
#ifdef PRINT_PERSISTENCE_PAIRS
std::cout << "persistence intervals in dim 0:" << std::endl;
#endif
std::vector<index_t> vertices_of_edge(2);
for (auto e : edges) {
vertices_of_edge.clear();
get_simplex_vertices(get_index(e), 1, n, binomial_coeff, std::back_inserter(vertices_of_edge));
index_t u = dset.find(vertices_of_edge[0]), v = dset.find(vertices_of_edge[1]);
if (u != v) {
#ifdef PRINT_PERSISTENCE_PAIRS
if (get_diameter(e) > 0) std::cout << " [0," << get_diameter(e) << ")" << std::endl;
#endif
dset.link(u, v);
} else
columns_to_reduce.push_back(e);
}
std::reverse(columns_to_reduce.begin(), columns_to_reduce.end());
#ifdef PRINT_PERSISTENCE_PAIRS
for (index_t i = 0; i < n; ++i)
if (dset.find(i) == i) std::cout << " [0, )" << std::endl << std::flush;
#endif
}
for (index_t dim = 1; dim <= dim_max; ++dim) {
rips_filtration_comparator<decltype(dist)> comp(dist, dim + 1, binomial_coeff);
rips_filtration_comparator<decltype(dist)> comp_prev(dist, dim, binomial_coeff);
hash_map<index_t, index_t> pivot_column_index;
pivot_column_index.reserve(columns_to_reduce.size());
compute_pairs(columns_to_reduce, pivot_column_index, dim, n, threshold, modulus, multiplicative_inverse, dist,
comp, comp_prev, binomial_coeff);
if (dim < dim_max) {
assemble_columns_to_reduce(columns_to_reduce, pivot_column_index, comp, dim, n, threshold, binomial_coeff);
}
}
}