-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathmasked_cross_entropy.py
52 lines (46 loc) · 2.03 KB
/
masked_cross_entropy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
from torch.autograd import Variable
from torch.nn import functional
def sequence_mask(sequence_length, max_len=None):
if max_len is None:
max_len = sequence_length.data.max()
batch_size = sequence_length.size(0)
seq_range = torch.arange(0, max_len).long()
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
seq_range_expand = Variable(seq_range_expand)
if sequence_length.is_cuda:
seq_range_expand = seq_range_expand.cuda()
seq_length_expand = (sequence_length.unsqueeze(1)
.expand_as(seq_range_expand))
return seq_range_expand < seq_length_expand
def masked_cross_entropy(logits, target, length):
length = Variable(torch.LongTensor(length)).cuda()
"""
Args:
logits: A Variable containing a FloatTensor of size
(batch, max_len, num_classes) which contains the
unnormalized probability for each class.
target: A Variable containing a LongTensor of size
(batch, max_len) which contains the index of the true
class for each corresponding step.
length: A Variable containing a LongTensor of size (batch,)
which contains the length of each data in a batch.
Returns:
loss: An average loss value masked by the length.
"""
# logits_flat: (batch * max_len, num_classes)
logits_flat = logits.view(-1, logits.size(-1))
# log_probs_flat: (batch * max_len, num_classes)
log_probs_flat = functional.log_softmax(logits_flat, dim=-1)
# target_flat: (batch * max_len, 1)
target_flat = target.view(-1, 1)
# losses_flat: (batch * max_len, 1)
losses_flat = -torch.gather(log_probs_flat, dim=1, index=target_flat)
# losses: (batch, max_len)
losses = losses_flat.view(*target.size())
# mask: (batch, max_len)
mask = sequence_mask(sequence_length=length, max_len=target.size(1))
losses = losses * mask.float()
loss = torch.div(losses.sum(dim=-1), length.float())
# loss = losses.sum() / length.float().sum()
return loss