-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
294 lines (245 loc) · 15.3 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import math, os, random, time, wandb
from datetime import datetime
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
# os.environ["CUDA_VISIBLE_DEVICES"]='1'
# os.environ["CUDA_LAUNCH_BLOCKING"]="1"
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, TensorDataset
from novelddi.parse_args import create_parser, get_hparams
# from novelddi.models.moco import MoCo_NovelDDI
from novelddi.models.simclr import SimCLR_NovelDDI
from novelddi.evaluate.evaluate import evaluate_final_embeds, evaluate_pt, stacked_inst_dist_topk_accuracy
from novelddi.data.data import get_pretrain_data
from novelddi.utils import (
set_seed,
AverageMeter,
ProgressMeter,
pretrain_modality_subset_sampler,
draw_umap_plot,
save_embeds,
save_checkpoint,
get_root_logger,
get_str_encoder_hparams,
get_kg_encoder_hparams,
get_cv_encoder_hparams,
get_tx_encoder_hparams,
get_transformer_fusion_hparams,
get_proj_hparams,
get_model,
LARS,
adjust_learning_rate,
to_device,
SEED,
)
set_seed(SEED)
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def train_epoch(train_loader, model, all_train_subset_masks, hard_negative_mask, optimizer, epoch, pretrain_mode, unbalanced, all_extra_molecules, extra_mol_str_masks, extra_mol_num, hparams, wandb, logger, device):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
learning_rates = AverageMeter('LR', ':.4e')
losses = AverageMeter('Loss', ':.4e')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, learning_rates, losses],
logger,
prefix="Epoch: [{}]".format(epoch)
)
model.train()
end = time.time()
iters_per_epoch = len(train_loader)
# moco_m = hparams['moco_m']
for i, batch_data in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
batch_drug_indices, batch_data = to_device(batch_data, device)
# adjust learning rate and momentum coefficient per iteration
lr = adjust_learning_rate(optimizer, epoch + i / iters_per_epoch, hparams['pretrain_lr'], hparams['warmup_epochs'], hparams['pretrain_num_epochs'])
learning_rates.update(lr)
# if hparams['moco_m_cos']:
# moco_m = adjust_moco_momentum(epoch + i / iters_per_epoch, hparams)
# Get two (subset sampling) masks for each drug in the batch. Note that in `MoCo_NovelDDI`, we directly feed the input mask to the encoder, so they must already be aligned with the drugs (rather than being aligned in `NovelDDI`).
batch_mask1, batch_mask2 = pretrain_modality_subset_sampler([all_train_subset_masks[drug_ind] for drug_ind in batch_drug_indices.tolist()], pretrain_mode=pretrain_mode, unbalanced=unbalanced)
batch_mask1, batch_mask2 = to_device(batch_mask1, device), to_device(batch_mask2, device)
if hard_negative_mask is not None:
batch_hard_negative_mask = to_device(hard_negative_mask[batch_drug_indices.tolist(), :][: , batch_drug_indices.tolist()], device)
else:
batch_hard_negative_mask = None
# Get extra negative molecules for the batch (if applicable)
if all_extra_molecules is not None and extra_mol_num > 0:
batch_extra_mols = all_extra_molecules[np.random.choice(all_extra_molecules.shape[0], extra_mol_num, replace=False)]
batch_extra_mols = to_device(batch_extra_mols, device)
else:
batch_extra_mols = None
optimizer.zero_grad()
# compute output
_, _, (logits, labels, loss) = model(batch_drug_indices.to(device), batch_mask1, batch_mask2, batch_hard_negative_mask, batch_data, batch_extra_mols, extra_mol_str_masks)
losses.update(loss.item(), len(batch_drug_indices))
# compute gradient and do SGD step
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
progress.display(i)
with torch.no_grad():
top1, top5 = stacked_inst_dist_topk_accuracy(logits, labels, topk=(1, 5))
# logger.info("Epoch: [{}/{}], Iter: [{}/{}], Loss: {:.4f}, Top1: {:.4f}, Top5: {:.4f}".format(epoch, hparams['pretrain_num_epocsh'], i, len(train_loader), loss.item(), top1.item(), top5.item()))
wandb.log({"train_loss": loss.item()}, step=epoch)
wandb.log({'batch train top1 (CL-head)': top1.item(), 'batch train top5 (CL-head)': top5.item()}, step=epoch) # Since in a batch the different drugs can be using different modality subsets (in `double_random` or `str_center` settings), we might see pretty stochastic results here.
# Adapted from https://github.com/facebookresearch/moco-v3/blob/main
def adjust_moco_momentum(epoch, hparams):
"""Adjust moco momentum based on current epoch"""
m = 1. - 0.5 * (1. + math.cos(math.pi * epoch / hparams['pretrain_num_epochs'])) * (1. - hparams['moco_m'])
return m
def main(args, hparams, wandb, logger, output_dir, device = DEVICE):
logger.info("Loading data...")
train_drugs, val_drugs, pretrain_drugs, train_loader, val_loader, pretrain_loader, collator, masks, all_train_subset_masks, hard_negative_mask, all_extra_molecules, extra_mol_str_masks, kg_args = get_pretrain_data(args, hparams)
# masks: numpy.ndarray, dtype = int (all drugs)
# hard_negative_mask: numpy.ndarray, dtype = bool (all drugs)
# all_train_subset_masks: list of torch.tensor, dtype = int (only train CL drugs)
# create model
# logger.info("=> creating model '{}'".format('MoCo_NovelDDI')) # SimCLR
logger.info("Creating model '{}'".format('SimCLR_NovelDDI'))
str_encoder_hparams = get_str_encoder_hparams(args, hparams)
kg_encoder_hparams = get_kg_encoder_hparams(args, hparams)
cv_encoder_hparams = get_cv_encoder_hparams(args, hparams, collator.cv_store.shape[-1])
tx_encoder_hparams = get_tx_encoder_hparams(args, hparams, list(collator.tx_store_dict.values())[0]['sigs'].shape[-1])
proj_hparams = get_proj_hparams(hparams)
transformer_fusion_hparams = get_transformer_fusion_hparams(args, hparams)
encoder, encoder_configs = get_model(
all_kg_data=collator.kg_data,
feature_dim=args.feature_dim,
prediction_dim=None,
str_encoder_name=args.str_encoder,
str_encoder_hparams=str_encoder_hparams,
kg_encoder_name=args.kg_encoder,
kg_encoder_hparams=kg_encoder_hparams,
cv_encoder_name=args.cv_encoder,
cv_encoder_hparams=cv_encoder_hparams,
tx_encoder_name=args.tx_encoder,
tx_encoder_hparams=tx_encoder_hparams,
num_attention_bottlenecks=args.num_attention_bottlenecks,
pos_emb_type=args.pos_emb_type,
pos_emb_dropout=args.pos_emb_dropout,
transformer_fusion_hparams=transformer_fusion_hparams,
proj_hparams=proj_hparams,
fusion=args.fusion,
normalize=args.normalize,
decoder_normalize=None,
checkpoint_path=None,
frozen=None,
device=device,
encoder_only=True,
finetune_mode=None,
str_node_feat_dim=collator.str_node_feat_dim,
logger=logger,
use_modality_pretrain=args.use_modality_pretrain,
use_tx_basal=args.use_tx_basal,
)
model = SimCLR_NovelDDI(encoder, hparams['feature_dim'], hparams['moco_mlp_dim'], hparams['moco_t'], raw_encoder_output=hparams['raw_encoder_output'], shared_predictor=hparams['shared_predictor'])
model.to(device)
logger.info(model)
# infer learning rate before changing batch size
args.pretrain_lr = args.pretrain_lr * args.pretrain_batch_size / 512
if args.pretrain_optimizer == 'lars':
optimizer = LARS(model.parameters(), lr=hparams['pretrain_lr'], weight_decay=hparams['pretrain_wd'], momentum=hparams['pretrain_momentum'])
elif args.pretrain_optimizer == 'adamw':
optimizer = torch.optim.AdamW(model.parameters(), lr=hparams['pretrain_lr'], weight_decay=hparams['pretrain_wd'], eps=hparams['pretrain_eps'], betas=(hparams['pretrain_beta1'], 0.999))
elif args.pretrain_optimizer == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), lr=hparams['pretrain_lr'], weight_decay=hparams['pretrain_wd'], momentum=hparams['pretrain_momentum'], nesterov=hparams['pretrain_nesterov'], dampening=hparams['pretrain_dampening'])
# scaler = torch.cuda.amp.GradScaler()
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
logger.info("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.pretrain_start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
else:
logger.info("=> no checkpoint found at '{}'".format(args.resume))
logger.info('Start pretraining')
# logger.info('Saving umap plots before pretraining')
# NOTE: Temporarily disabled
# draw_umap_plot(None, model.base_encoder, train_drugs, train_loader, masks, collator, 'train_before_pretrain.png', wandb, device, logger, epoch=0, output_dir=output_dir, raw_encoder_output=hparams['raw_encoder_output'])
# draw_umap_plot(None, model.base_encoder, val_drugs, val_loader, masks, collator, 'val_before_pretrain.png', wandb, device, logger, epoch=0, output_dir=output_dir, raw_encoder_output=hparams['raw_encoder_output'])
if args.save_checkpoints != 0:
logger.info('Saving embeddings before pretraining')
save_dir = output_dir + f'before_pretrain/'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
train_outputs, val_outputs = save_embeds(model.base_encoder, train_drugs, val_drugs, masks, collator, save_dir, device, raw_encoder_output=hparams['raw_encoder_output'])
# evaluate_final_embeds(train_outputs, val_outputs, save_dir, wandb, logger, 0)
param_track = {}
wandb.watch(model.base_encoder, log='all', log_freq=500)
for epoch in range(args.pretrain_start_epoch, args.pretrain_num_epochs):
logger.info('Epoch: {}'.format(epoch))
train_epoch(train_loader, model, all_train_subset_masks, hard_negative_mask, optimizer, epoch, args.pretrain_mode, args.pretrain_unbalanced, all_extra_molecules, extra_mol_str_masks, args.extra_str_neg_mol_num, hparams, wandb, logger, device)
# if epoch % args.evaluate_interval == 0 or (args.save_checkpoints != 0 and epoch % args.save_checkpoints == 0 and epoch > 0):
if (args.save_checkpoints != 0) and (epoch % args.save_checkpoints == 0) and (epoch > 0):
model.eval()
for name, param in model.named_parameters():
param_track.setdefault(name, []).append(param.data.abs().max().item())
logger.info('evaluate_pt train')
all_train_outputs = evaluate_pt(model, train_drugs, masks, hard_negative_mask, collator, 'train', wandb, logger, device, epoch)
logger.info('evaluate_pt val')
all_val_outputs = evaluate_pt(model, val_drugs, masks, hard_negative_mask, collator, 'val', wandb, logger, device, epoch)
logger.info('save checkpoint')
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'encoder_configs': encoder_configs,
'kg_args': kg_args,
}, is_best=False, filename=output_dir+f'checkpoint_{epoch}.pt')
pretrain_drugs = np.concatenate([train_drugs, val_drugs])
# NOTE: Segmentation faults might occur here.
logger.info('draw_umap_plot train')
draw_umap_plot({indices_str:output['embeds'] for indices_str, output in all_train_outputs.items()}, None, {indices:output['drugs'].tolist() for indices, output in all_train_outputs.items()}, None, None, None, f'train_epoch', wandb, None, logger, epoch=epoch, raw_encoder_output=hparams['raw_encoder_output'])
logger.info('draw_umap_plot val')
draw_umap_plot({indices_str:output['embeds'] for indices_str, output in all_val_outputs.items()}, None, {indices:output['drugs'].tolist() for indices, output in all_val_outputs.items()}, None, None, None, f'val_epoch', wandb, None, logger, epoch=epoch, raw_encoder_output=hparams['raw_encoder_output'])
# logger.info('draw_umap_plot train_val')
# draw_umap_plot(None, model.base_encoder, pretrain_drugs, pretrain_loader, masks, collator, f'train_val_epoch', wandb, device, logger, epoch=epoch, other_labels = np.array(['train'] * train_drugs.shape[0] + ['val'] * val_drugs.shape[0]), raw_encoder_output=hparams['raw_encoder_output'])
if args.save_checkpoints != 0:
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'encoder_configs': encoder_configs,
'kg_args': kg_args,
}, is_best=False, filename=output_dir+f'/checkpoint_{epoch}.pt')
logger.info('Finished pretraining... Saving embeddings...')
save_dir = output_dir + f'/after_pretrain_{epoch}/'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
train_outputs, val_outputs = save_embeds(model.base_encoder, train_drugs, val_drugs, masks, collator, save_dir, device, raw_encoder_output=hparams['raw_encoder_output'])
# draw_umap_plot({indices_str:output['embeds'] for indices_str, output in train_outputs.items()}, None, {indices:output['drugs'].tolist() for indices, output in train_outputs.items()}, None, None, None, 'train_after_pretrain.png', wandb, device, logger, epoch=epoch, raw_encoder_output=hparams['raw_encoder_output'])
# draw_umap_plot({indices_str:output['embeds'] for indices_str, output in val_outputs.items()}, None, {indices:output['drugs'].tolist() for indices, output in val_outputs.items()}, None, None, None, 'val_after_pretrain.png', wandb, device, logger, epoch=epoch, raw_encoder_output=hparams['raw_encoder_output'])
logger.info('Evaluating final embeddings... Would likely take half an hour or so...')
evaluate_final_embeds(train_outputs, val_outputs, save_dir, wandb, logger, epoch)
if __name__ == '__main__':
args = create_parser('pretrain')
hparams = get_hparams(args, 'pretrain')
wandb.init(
project='pretrain_debug' if args.debug else f'pretrain_{args.data_source}_{args.split_method}',
entity='noveldrugdrug',
dir=args.save_dir,
mode='offline' if args.debug else 'online',
config=hparams,
)
wandb.run.name = args.run_name if args.run_name is not None else wandb.run.name
cur_time = datetime.now().strftime('%Y-%m-%d_%H:%M')
output_dir = f'{args.save_dir}/{cur_time}_{wandb.run.name}/'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = get_root_logger(f'{output_dir}/log.txt')
logger.info("Args: {}".format(args))
logger.info("hparams: {}".format(hparams))
logger.info("wandb: {}".format(wandb.run.name))
logger.info("log_dir_path: {}".format(output_dir))
main(args, hparams, wandb, logger, output_dir)