-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy patheval_det.py
100 lines (79 loc) · 3.47 KB
/
eval_det.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import argparse
import numpy as np
import torch
import tensorflow as tf
from PIL import Image, ImageDraw
from mcunet.utils.det_helper import MergeNMS, Yolo3Output
from mcunet.model_zoo import download_tflite
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # use only cpu for tf-lite evaluation
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
parser = argparse.ArgumentParser()
parser.add_argument('--net_id', type=str, help='net id of the model')
# dataset args.
parser.add_argument('--image_path', default='assets/sample_images/person_det.jpg',
help='path to sample input image')
args = parser.parse_args()
def eval_image(image):
interpreter.set_tensor(
input_details[0]['index'], image.reshape(*input_shape))
interpreter.invoke()
output_data = [interpreter.get_tensor(
output_details[i]['index']) for i in range(len(output_details))]
# now parse the output in torch (the same logistics will be implemented on mcu side with tinyengine)
outputs = [torch.from_numpy(d).permute(0, 3, 1, 2).contiguous() for d in output_data]
outputs = [output_layer(output) for output_layer, output in zip(output_layers, outputs)]
outputs = torch.cat(outputs, dim=1)
ids, scores, bboxes = nms_layer(outputs)
# now finally visualize the pred bboxes
threshold = 0.3
n_positive = (scores > threshold).sum()
ids = ids[0, :n_positive, 0].numpy() # single image
bboxes = bboxes[0, :n_positive].numpy()
pil_image = load_example_image(resolution[::-1])
image_draw = ImageDraw.Draw(pil_image)
for cls, bbox in zip(ids, bboxes):
image_draw.rectangle(bbox, outline="red")
print(cls, [round(_) for _ in bbox])
filename, file_extension = os.path.splitext(args.image_path)
vis_image_dir = filename + '_vis' + file_extension
pil_image.save(vis_image_dir)
def load_example_image(resolution):
image = Image.open(args.image_path).convert("RGB")
image = image.resize(resolution)
return image
def preprocess_image(image):
image_np = np.array(image)[None, ...]
image_np = (image_np / 255) * 2 - 1
return image_np.astype('float32') # since the graph has a quantizer input op, we use floating-point as input
def build_det_helper():
nms = MergeNMS.build_from_config({
"nms_name": "merge",
"nms_valid_thres": 0.01,
"nms_thres": 0.45,
"nms_topk": 400,
"post_nms": 100,
"pad_val": -1,
})
output_configs = [
{"num_class": 1, "anchors": [116, 90, 156, 198, 373, 326], "stride": 32, "alloc_size": [128, 128]},
{"num_class": 1, "anchors": [30, 61, 62, 45, 59, 119], "stride": 16, "alloc_size": None},
{"num_class": 1, "anchors": [10, 13, 16, 30, 33, 23], "stride": 8, "alloc_size": None},
]
outputs = [
Yolo3Output(**cfg).eval() for cfg in output_configs
]
return nms, outputs
if __name__ == '__main__':
tflite_path = download_tflite(net_id="person-det")
interpreter = tf.lite.Interpreter(tflite_path)
interpreter.allocate_tensors()
nms_layer, output_layers = build_det_helper()
# get input & output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
input_shape = input_details[0]['shape']
resolution = input_shape[1:3] # we use non-square input for this model
sample_image = load_example_image(resolution[::-1]) # w, h
sample_image = preprocess_image(sample_image)
eval_image(sample_image)