-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathdensity.m
83 lines (77 loc) · 1.65 KB
/
density.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
function [y,xo]=density(x,xout,ss,gaus)
%DENSITY Density estimator using Gaussian kernel
% Y = DENSITY(X,XOUT,S)
% X is the vector of data values.
% The density estimator is evaluated at XOUT points.
% S is a scale factor for the default kernel bandwidth,
% default S = 1.
% Without output arguments the density is plotted.
% Marko Laine <[email protected]>
% $Revision: 1.11 $ $Date: 2014/09/28 17:46:32 $
if nargin<3
ss=1;
end
if nargin<4
gaus=1;
end
if nargin<2 | isempty(xout)
xmin=min(x); xmax=max(x); xrange=xmax-xmin;
if length(x) > 200
xout=linspace(xmin-0.08*xrange,xmax+0.08*xrange);
else
xout=linspace(mean(x)-4*std(x),mean(x)+4*std(x));
end
end
y = zeros(size(xout));
n = length(xout);
nx = length(x);
%%% see MASS 2nd ed page 181.
if iqrange(x)<=0
s=1.06*std(x)*nx^(-1/5);
else
s=1.06*min(std(x),iqrange(x)/1.34)*nx^(-1/5);
end
% s=1.144*std(x)*nx^(-1/5);
if ss>0
s=ss*s;
elseif ss<0
s = abs(ss);
end
if gaus==1
% Gaussian kernel
for i=1:n
y(i) = 1/nx*sum(norpf((xout(i)-x)/s))./s;
end
elseif gaus == 0
% triangular kernel
s=s*1.2113;
for i=1:n
y(i) = 1/nx*sum(max(0,1-abs(xout(i)-x)/s))./s;
end
else
% Gamma kernel
if std(x)/mean(x) > 0.9
b = s;
elseif std(x)/mean(x) > 0.4
b = s/2;
elseif std(x)/mean(x) > 0.2
b = s/5;
else
b = s/40; % how to choose this?
end
ii = x >= 2*b;
for i=1:n
if xout(i)>0
y(i) = 1/nx*sum(gammapf(xout(i),x(ii)/b,b));
y(i) = y(i) + 1/nx*sum(gammapf(xout(i),(x(~ii)/2/b).^2+1,b));
% y(i) = 1/nx*sum(gammapf(xout(i),x/b+1,b));
end
end
end
if nargout>1
xo=xout;
end
if nargout==0
plot(xout,y)
clear y % no output
end