-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_sample.py
executable file
·188 lines (150 loc) · 5.84 KB
/
image_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
import argparse
import os
import random
import torch as th
import torch.distributed as dist
import torchvision as tv
import numpy as np
from guided_diffusion.image_datasets import load_data
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
model_and_diffusion_defaults,
create_model_and_diffusion,
add_dict_to_argparser,
args_to_dict,
)
def main():
args = create_argparser().parse_args()
logger.log("seed: "+str(args.seed))
deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
th.manual_seed(args.seed)
if deterministic:
th.backends.cudnn.deterministic = True
th.backends.cudnn.benchmark = False
dist_util.setup_dist(gpus_per_node=args.gpus_per_node)
logger.configure()
logger.log("creating model and diffusion...")
model, diffusion = create_model_and_diffusion(
**args_to_dict(args, model_and_diffusion_defaults().keys())
)
model.load_state_dict(
dist_util.load_state_dict(args.model_path, map_location="cpu")
)
model.to(dist_util.dev())
logger.log("creating data loader...")
data = load_data(
dataset_mode=args.dataset_mode,
data_dir=args.data_dir,
batch_size=args.batch_size,
image_size=args.image_size,
class_cond=args.class_cond,
deterministic=True,
random_crop=False,
random_flip=False,
is_train=False
)
if args.use_fp16:
model.convert_to_fp16()
model.eval()
image_path = os.path.join(args.results_path, 'images')
os.makedirs(image_path, exist_ok=True)
label_path = os.path.join(args.results_path, 'labels')
os.makedirs(label_path, exist_ok=True)
sample_path = os.path.join(args.results_path, 'samples')
os.makedirs(sample_path, exist_ok=True)
logger.log("sampling...")
all_samples = []
for i, (batch, cond) in enumerate(data):
image = ((batch + 1.0) / 2.0).cuda()
label = (cond['label_ori'].float() / 255.0).cuda()
model_kwargs = preprocess_input(cond, num_classes=args.num_classes)
model_kwargs['results_path'] = args.results_path
if args.unlabeled_to_zero:
y = model_kwargs['y']
mask = th.nn.functional.one_hot(th.tensor([y.shape[1]-1]),num_classes=y.shape[1])
mask = th.ones_like(mask) - mask
mask = mask.unsqueeze(1).unsqueeze(2)
model_kwargs['y'] = (y.permute(0,2,3,1)*mask).permute(0,3,1,2)
if args.seed_align:
y = model_kwargs['y']
_ = th.rand((y.shape[0],y.shape[2],y.shape[3]),device=image.device)
# set hyperparameter
model_kwargs['s'] = args.s
model_kwargs['dynamic_threshold'] = args.dynamic_threshold
model_kwargs['extrapolation'] = args.extrapolation
sample_fn = (
diffusion.p_sample_loop
)
sample = sample_fn(
model,
(args.batch_size, 3, image.shape[2], image.shape[3]),
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
progress=True,
noise=None
)
sample = (sample + 1) / 2.0
gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
dist.all_gather(gathered_samples, sample) # gather not supported with NCCL
all_samples.extend([sample.cpu().numpy() for sample in gathered_samples])
for j in range(sample.shape[0]):
tv.utils.save_image(image[j], os.path.join(image_path, cond['path'][j].split('/')[-1].split('.')[0] + '.png'))
tv.utils.save_image(sample[j], os.path.join(sample_path, cond['path'][j].split('/')[-1].split('.')[0] + '.png'))
tv.utils.save_image(label[j], os.path.join(label_path, cond['path'][j].split('/')[-1].split('.')[0] + '.png'))
logger.log(f"created {len(all_samples) * args.batch_size} samples")
if len(all_samples) * args.batch_size >= args.num_samples:
break
dist.barrier()
logger.log("sampling complete")
def preprocess_input(data, num_classes):
# move to GPU and change data types
data['label'] = data['label'].long()
# create one-hot label map
label_map = data['label']
bs, _, h, w = label_map.size()
input_label = th.FloatTensor(bs, num_classes, h, w).zero_()
input_semantics = input_label.scatter_(1, label_map, 1.0)
# concatenate instance map if it exists
if 'instance' in data:
inst_map = data['instance']
instance_edge_map = get_edges(inst_map)
input_semantics = th.cat((input_semantics, instance_edge_map), dim=1)
return {'y': input_semantics}
def get_edges(t):
edge = th.ByteTensor(t.size()).zero_()
edge[:, :, :, 1:] = edge[:, :, :, 1:] | (t[:, :, :, 1:] != t[:, :, :, :-1])
edge[:, :, :, :-1] = edge[:, :, :, :-1] | (t[:, :, :, 1:] != t[:, :, :, :-1])
edge[:, :, 1:, :] = edge[:, :, 1:, :] | (t[:, :, 1:, :] != t[:, :, :-1, :])
edge[:, :, :-1, :] = edge[:, :, :-1, :] | (t[:, :, 1:, :] != t[:, :, :-1, :])
return edge.float()
def create_argparser():
defaults = dict(
data_dir="",
dataset_mode="",
clip_denoised=True,
num_samples=10000,
batch_size=1,
model_path="",
results_path="",
is_train=False,
s=1.0,
gpus_per_node=4,
gpu=None,
unlabeled_to_zero = False,
dynamic_threshold = -1.0,
extrapolation = -1.0,
seed = 42,
seed_align = False,
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()