-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain_book.py
133 lines (112 loc) · 6.35 KB
/
main_book.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import argparse
import torch
import numpy as np
from train import *
from model import *
import sampler
from preprocess import process
from evaluate import evaluate
import pdb
def main():
parser = argparse.ArgumentParser(description="Pytorch implementation of Adaptive Learning Meta-paths to learn on Heterogeneous graph")
parser.add_argument('--seed', type=int, default=777)
parser.add_argument('--dataset', type=str, default='book')
parser.add_argument('--model_name', type=str, default='GIN')
parser.add_argument('--num_epochs', type=int, default=50)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--wlr', type=float, default=0.0001)
parser.add_argument('--decay', type=float, default=0.0001)
parser.add_argument('--num_layers', type=int, default=2)
parser.add_argument('--num_hops', type=int, default=3)
parser.add_argument('--neighbor_size',type=int, default=[16,16,16])
parser.add_argument('--emb_dim', type=int, default=64)
parser.add_argument('--weight_emb_dim', type=int, default=1000)
parser.add_argument('--n_meta', type=int, default=5)
parser.add_argument('--metapath', type=str, default=[0,1,2,3,8])
parser.add_argument('--num_hub', type=int, default=5)
parser.add_argument('--n_fold', type=int, default=3)
parser.add_argument('--selar', type=str, default='True')
parser.add_argument('--selarhint', type=str, default='False')
parser.add_argument('--hreg', type=float, default=1)
args = parser.parse_args()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_dataset, train_fold, meta_fold, valid_target, test_target, kg, hub, num_nodes, n_relation, n_user, n_entity, n_item = process(args)
ui = train_dataset[train_dataset[:,2]==1]
iu = train_dataset[train_dataset[:,2]==1][:, [1,0,2]]
ui[:, 2] = n_relation
iu[:, 2] = n_relation+1
train_all = torch.cat((ui, iu))
edge_index = np.concatenate((train_all, kg)).T
edge_index = torch.from_numpy(edge_index)
if args.model_name == "GCN":
model = MetaNetworkGCN
elif args.model_name == "GAT":
model = MetaNetworkGAT
elif args.model_name == "GIN":
model = MetaNetworkGIN
elif args.model_name == "SGC":
model = MetaNetworkSGC
model = model(args, num_nodes).to(device)
optimizer = torch.optim.Adam(model.params(), lr=args.lr, weight_decay=args.decay)
### Task-specific layers ###
input_dim = args.n_meta + 2
phis, opt_phi = [],[]
for _ in range(args.n_meta+1):
phi = Phi(args.emb_dim, 100, args.emb_dim).to(device)
opt_phi.append(torch.optim.Adam(phi.params(), lr=args.lr))
phis.append(phi)
### Weighting function ###
vnet = Weight(input_dim, args.weight_emb_dim, 1).to(device)
optimizer_v = torch.optim.Adam(vnet.params(), lr=args.wlr)
### For Hint Network ###
if args.selarhint == 'True':
h_nets, h_optimizers = [], []
for _ in range(args.n_meta):
net = MetaNetworkHUB(args).to(device)
opt = torch.optim.Adam(net.params(), lr=args.lr, weight_decay=args.decay)
h_nets.append(net)
h_optimizers.append(opt)
h_vnet = Weight(input_dim+1, args.weight_emb_dim, 1).to(device)
h_optimizer_v = torch.optim.Adam(h_vnet.params(), lr=args.wlr, weight_decay=args.h_decay)
best_valid_auc, best_test_auc, best_valid_auc_epoch = 0,0,0
train_loaders = []
for _ in range(args.n_fold):
train_loaders.append(sampler.Meta_NeighborSampler(args=args, edge_index=edge_index, num_nodes=num_nodes, size=args.neighbor_size, num_hops=args.num_layers, batch_size=args.batch_size))
for epoch in range(1, args.num_epochs + 1):
loaders = []
if args.selar == 'True':
for i, train_loader in enumerate(train_loaders):
loaders.append(train_loader(train_fold[i], meta_fold[i], None))
train_loader = sampler.Meta_NeighborSampler(args=args, edge_index=edge_index, num_nodes=num_nodes, size=args.neighbor_size, num_hops=args.num_layers, batch_size=args.batch_size)
loader = train_loader(train_dataset, None, None)
train_losses, train_auc = selar_train(args, epoch, loaders, loader, model, vnet, phis, optimizer, optimizer_v, opt_phi, num_nodes, device)
if args.selarhint == 'True':
for i, train_loader in enumerate(train_loaders):
loaders.append(train_loader(train_fold[i], meta_fold[i], hub))
train_loader = sampler.Meta_NeighborSampler(args=args, edge_index=edge_index, num_nodes=num_nodes, size=args.neighbor_size, num_hops=args.num_layers, batch_size=args.batch_size)
loader = train_loader(train_dataset, None, hub)
train_losses, train_auc = selarhint_train(args, epoch, loaders, loader, model, h_nets, vnet, h_vnet, phis, optimizer, h_optimizers, optimizer_v, h_optimizer_v, opt_phi, num_nodes, device)
eval_loader = sampler.eval_NeighborSampler(args=args, edge_index=edge_index, num_nodes=num_nodes, size=args.neighbor_size, num_hops=args.num_layers, batch_size=args.batch_size)
valid_losses, valid_auc, valid_f1, valid_acc = evaluate(args, valid_target, eval_loader, model, phis, device)
test_losses, test_auc, test_f1, test_acc = evaluate(args, test_target, eval_loader, model, phis, device)
print('{:2} Epoch - Train Loss: {}'.format(epoch, train_losses))
print('{:2} Epoch - Train auc: {} '.format(epoch, train_auc))
print('{:2} Epoch - Test auc: {} '.format(epoch, test_auc))
if valid_auc > best_valid_auc:
best_valid_auc_epoch = epoch
best_test_auc = test_auc
best_valid_auc = valid_auc
if args.use_wandb == 'True':
log_dict = {"Train Loss": train_losses, "Test Loss": test_losses,'Valid Loss': valid_losses,
"Train auc": train_auc, "Test auc": test_auc, 'Valid auc': valid_auc,
"Best Test auc": best_test_auc}
wandb.log(log_dict)
print('{:2} Best Test auc: {} '.format(epoch, best_test_auc))
if __name__ == "__main__":
main()