-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathextract_event_mapper.py
185 lines (156 loc) · 7.46 KB
/
extract_event_mapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import copy
import re
from typing import Dict, Optional
from loguru import logger
from pydantic import PositiveInt
from data_juicer.ops.base_op import OPERATORS, TAGGING_OPS, Mapper
from data_juicer.utils.constant import Fields, MetaKeys
from data_juicer.utils.model_utils import get_model, prepare_model
from ..common import split_text_by_punctuation
OP_NAME = 'extract_event_mapper'
# TODO: LLM-based inference.
@TAGGING_OPS.register_module(OP_NAME)
@OPERATORS.register_module(OP_NAME)
class ExtractEventMapper(Mapper):
"""
Extract events and relevant characters in the text
"""
_batched_op = True
DEFAULT_SYSTEM_PROMPT = ('给定一段文本,对文本的情节进行分点总结,并抽取与情节相关的人物。\n'
'要求:\n'
'- 尽量不要遗漏内容,不要添加文本中没有的情节,符合原文事实\n'
'- 联系上下文说明前因后果,但仍然需要符合事实\n'
'- 不要包含主观看法\n'
'- 注意要尽可能保留文本的专有名词\n'
'- 注意相关人物需要在对应情节中出现\n'
'- 只抽取情节中的主要人物,不要遗漏情节的主要人物\n'
'- 总结格式如下:\n'
'### 情节1:\n'
'- **情节描述**: ...\n'
'- **相关人物**:人物1,人物2,人物3,...\n'
'### 情节2:\n'
'- **情节描述**: ...\n'
'- **相关人物**:人物1,人物2,...\n'
'### 情节3:\n'
'- **情节描述**: ...\n'
'- **相关人物**:人物1,...\n'
'...\n')
DEFAULT_INPUT_TEMPLATE = '# 文本\n```\n{text}\n```\n'
DEFAULT_OUTPUT_PATTERN = r"""
\#\#\#\s*情节(\d+):\s*
-\s*\*\*情节描述\*\*\s*:\s*(.*?)\s*
-\s*\*\*相关人物\*\*\s*:\s*(.*?)(?=\#\#\#|\Z)
"""
def __init__(self,
api_model: str = 'gpt-4o',
*,
event_desc_key: str = MetaKeys.event_description,
relevant_char_key: str = MetaKeys.relevant_characters,
api_endpoint: Optional[str] = None,
response_path: Optional[str] = None,
system_prompt: Optional[str] = None,
input_template: Optional[str] = None,
output_pattern: Optional[str] = None,
try_num: PositiveInt = 3,
drop_text: bool = False,
model_params: Dict = {},
sampling_params: Dict = {},
**kwargs):
"""
Initialization method.
:param api_model: API model name.
:param event_desc_key: The key name to store the event descriptions
in the meta field. It's "event_description" in default.
:param relevant_char_key: The field name to store the relevant
characters to the events in the meta field. It's
"relevant_characters" in default.
:param api_endpoint: URL endpoint for the API.
:param response_path: Path to extract content from the API response.
Defaults to 'choices.0.message.content'.
:param system_prompt: System prompt for the task.
:param input_template: Template for building the model input.
:param output_pattern: Regular expression for parsing model output.
:param try_num: The number of retry attempts when there is an API
call error or output parsing error.
:param drop_text: If drop the text in the output.
:param model_params: Parameters for initializing the API model.
:param sampling_params: Extra parameters passed to the API call.
e.g {'temperature': 0.9, 'top_p': 0.95}
:param kwargs: Extra keyword arguments.
"""
super().__init__(**kwargs)
self.event_desc_key = event_desc_key
self.relevant_char_key = relevant_char_key
self.system_prompt = system_prompt or self.DEFAULT_SYSTEM_PROMPT
self.input_template = input_template or self.DEFAULT_INPUT_TEMPLATE
self.output_pattern = output_pattern or self.DEFAULT_OUTPUT_PATTERN
self.sampling_params = sampling_params
self.model_key = prepare_model(model_type='api',
model=api_model,
endpoint=api_endpoint,
response_path=response_path,
**model_params)
self.try_num = try_num
self.drop_text = drop_text
def parse_output(self, raw_output):
pattern = re.compile(self.output_pattern, re.VERBOSE | re.DOTALL)
matches = pattern.findall(raw_output)
event_list, character_list = [], []
for match in matches:
_, desc, chars = match
chars = split_text_by_punctuation(chars)
if len(chars) > 0:
event_list.append(desc)
character_list.append(chars)
return event_list, character_list
def _process_single_sample(self, text='', rank=None):
client = get_model(self.model_key, rank=rank)
input_prompt = self.input_template.format(text=text)
messages = [{
'role': 'system',
'content': self.system_prompt
}, {
'role': 'user',
'content': input_prompt
}]
event_list, character_list = [], []
for _ in range(self.try_num):
try:
output = client(messages, **self.sampling_params)
event_list, character_list = self.parse_output(output)
if len(event_list) > 0:
break
except Exception as e:
logger.warning(f'Exception: {e}')
return event_list, character_list
def process_batched(self, samples, rank=None):
# check if it's generated already
if self.event_desc_key in samples[Fields.meta][
0] and self.relevant_char_key in samples[Fields.meta][0]:
return samples
events, characters = [], []
for text in samples[self.text_key]:
cur_events, cur_characters = self._process_single_sample(text,
rank=rank)
events.append(cur_events)
characters.append(cur_characters)
if self.drop_text:
samples.pop(self.text_key)
new_samples = []
for i in range(len(events)):
for event, character in zip(events[i], characters[i]):
cur_sample = {
key: copy.deepcopy(samples[key][i])
for key in samples
}
cur_sample[Fields.meta][self.event_desc_key] = event
cur_sample[Fields.meta][self.relevant_char_key] = character
new_samples.append(cur_sample)
if len(new_samples) == 0:
logger.warning('Extract Not event in the batch of samples!')
return samples
res_samples = {}
keys = new_samples[0].keys()
for key in keys:
res_samples[key] = [s[key] for s in new_samples]
return res_samples