-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEncoding.v
363 lines (306 loc) · 12.6 KB
/
Encoding.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
Load Common.
Require Import FormulaFacts.
Require Import Psatz. (*lia : linear integer arithmetic*)
Require Import Derivations.
Require Import Diophantine.
Require Import UserTactics.
Definition dagger : formula := atom (0, 0).
Definition triangle : formula := atom (0, 1).
Definition to_dagger (s: formula) := arr s dagger.
Definition bullet1 : formula := atom (2, 1).
Definition bullet2 : formula := atom (2, 2).
Definition bullet3 : formula := atom (2, 3).
Definition a_u : formula := atom (3, 1).
Definition a_s : formula := atom (3, 2).
Definition a_p : formula := atom (3, 3).
Definition represent_nat (n : nat) : formula := atom (1, n).
Definition one : formula := represent_nat 1. (*number encoding: [atom (1,n)] = n*)
Definition U (s: formula) := arr (arr (to_dagger s) bullet1) (arr (arr s bullet2) a_u).
Definition S (s t u: formula) :=
arr (arr (to_dagger s) bullet1)
(arr (arr (to_dagger t) bullet2)
(arr (arr (to_dagger u) bullet3) a_s)).
Definition P (s t u: formula) :=
arr (arr (to_dagger s) bullet1)
(arr (arr (to_dagger t) bullet2)
(arr (arr (to_dagger u) bullet3) a_p)).
Definition calC : list formula := [a_u; a_s; a_p; triangle; bullet1; bullet2; bullet3].
Inductive interpretation (s : formula) (n : nat) : Prop :=
| interpret :
derivation calC (Formula.arr (to_dagger s) (to_dagger (represent_nat n))) ->
derivation calC (Formula.arr (to_dagger (represent_nat n)) (to_dagger s)) -> interpretation s n.
Lemma interpretation_of_representation : forall (n: nat), interpretation (represent_nat n) n.
Proof.
split; apply intro_arr; derivation_rule.
Qed.
Lemma interpretation_one : interpretation one 1.
Proof.
split; apply intro_arr; derivation_rule.
Qed.
Definition s_x_u : formula := let a := 1 in let b := 0 in
quant (
arr (U (var 0)) (arr ( quant ( arr (U (var b)) (
arr (S (var a) one (var b)) ( arr (P (var b) one (var b)) triangle)))) triangle)).
Definition s_x_s : formula := let a := 4 in let b := 3 in let c := 2 in let d := 1 in let e := 0 in
quant ( quant ( quant ( quant ( quant (
arr (U (var a)) ( arr (U (var b)) ( arr (U (var c)) ( arr (U (var d)) ( arr (U (var e)) (
arr (S (var a) (var b) (var c)) ( arr (S (var b) one (var d)) ( arr (S (var c) one (var e)) (
arr (arr (S (var a) (var d) (var e)) triangle) triangle))))))))))))).
Definition s_x_p : formula := let a := 4 in let b := 3 in let c := 2 in let d := 1 in let e := 0 in
quant ( quant ( quant ( quant ( quant (
arr (U (var a)) ( arr (U (var b)) ( arr (U (var c)) ( arr (U (var d)) ( arr (U (var e)) (
arr (P (var a) (var b) (var c)) ( arr (S (var b) one (var d)) ( arr (S (var c) (var a) (var e)) (
arr (arr (P (var a) (var d) (var e)) triangle) triangle))))))))))))).
Definition represent_diophantine (d : diophantine) (t : formula) : formula :=
match d with
| dio_one a => arr (U (var a)) (arr (P (var a) (var a) one) t)
| dio_sum a b c => arr (U (var a)) (arr (U (var b)) (arr (U (var c)) (arr (S (var a) (var b) (var c)) t)))
| dio_prod a b c => arr (U (var a)) (arr (U (var b)) (arr (U (var c)) (arr (P (var a) (var b) (var c)) t)))
end.
Fixpoint represent_diophantines (ds : list diophantine) : formula :=
match ds with
| [] => triangle
| d :: ds' => represent_diophantine d (represent_diophantines ds')
end.
Fixpoint diophantine_variable_bound (ds : list diophantine) : nat :=
match ds with
| [] => 0
| (dio_one x) :: ds => max (diophantine_variable_bound ds) (1 + x)
| (dio_sum x y z) :: ds => max (diophantine_variable_bound ds) (max (1 + x) (max (1 + y) (1 + z)))
| (dio_prod x y z) :: ds => max (diophantine_variable_bound ds) (max (1 + x) (max (1 + y) (1 + z)))
end.
Definition s_x_d (ds : list diophantine) := let n := diophantine_variable_bound ds in
quantify_formula n (arr (arr triangle triangle) (represent_diophantines ds)).
Definition ΓI (ds : list diophantine) := [s_x_s; s_x_u; s_x_p; s_x_d ds].
(*we consider encoding of strictly positive natural numbers*)
Definition represents_nat (s : formula) := exists (m : nat),
s = U (represent_nat m) /\ m > 0.
Definition encodes_nat (s : formula) := exists (m1 : nat) (s1 : formula),
s = U s1 /\ interpretation s1 m1.
Definition encodes_sum (s : formula) := exists (s1 s2 s3 : formula),
s = S s1 s2 s3 /\ (exists (m1 m2 m3 : nat), interpretation s1 m1 /\ interpretation s2 m2 /\ interpretation s3 m3 /\ m1 + m2 = m3).
Definition encodes_prod (s : formula) := exists (s1 s2 s3 : formula),
s = P s1 s2 s3 /\ (exists (m1 m2 m3 : nat), interpretation s1 m1 /\ interpretation s2 m2 /\ interpretation s3 m3 /\ m1 * m2 = m3).
Definition represent_diophantine_repr (f : nat -> formula) (d : diophantine) : list formula :=
match d with
| dio_one a => [U (f a); P (f a) (f a) one]
| dio_sum a b c => [U (f a); U (f b); U (f c); S (f a) (f b) (f c)]
| dio_prod a b c => [U (f a); U (f b); U (f c); P (f a) (f b) (f c)]
end.
Lemma represents_nat_intro : forall (s : formula) (m : nat), s = represent_nat m -> m > 0 -> represents_nat (U s).
Proof.
intros. subst. eexists. by split.
Qed.
Lemma encodes_sum_intro : forall (s1 s2 s3 : formula) (m1 m2 m3 : nat),
interpretation s1 m1 -> interpretation s2 m2 -> interpretation s3 m3 -> m1 + m2 = m3 -> encodes_sum (S s1 s2 s3).
Proof.
intros.
do 3 eexists; split; first reflexivity.
do 3 eexists; do 3 (split; first eassumption).
done.
Qed.
Lemma encodes_prod_intro : forall (s1 s2 s3 : formula) (m1 m2 m3 : nat),
interpretation s1 m1 -> interpretation s2 m2 -> interpretation s3 m3 -> m1 * m2 = m3 -> encodes_prod (P s1 s2 s3).
Proof.
intros.
do 3 eexists; split; first reflexivity.
do 3 eexists; do 3 (split; first eassumption).
done.
Qed.
Lemma lc_represent_diophantines : forall ds, lc (diophantine_variable_bound ds) (represent_diophantines ds).
Proof.
elim.
constructor.
case; (
intros; simpl;
do ? (try lia; constructor);
eapply Lc.relax; [ eassumption | lia ]).
Qed.
Ltac decompose_lc :=
do ? (
match goal with
| [H : lc _ ?s |- _] =>
match eval hnf in s with
| arr _ _ => inversion_clear H
| var _ => inversion_clear H
| atom _ => inversion_clear H
end
end).
Lemma inspect_chain_diophantines_aux_one : forall (m : nat) (params : list formula) (ds : list diophantine),
lc m (represent_diophantines ds) ->
chain (quantify_formula m (arr (arr triangle triangle) (represent_diophantines ds))) (get_label triangle) params ->
exists (f : nat -> formula),
tail params = flat_map (represent_diophantine_repr f) ds /\ (forall (x : nat), m <= x -> f x = one).
Proof.
(*no more induction on n*)
intros.
gimme chain; simpl; inversion.
gimme contains. simpl.
move /quantified_arrow_not_contains_atom => //.
gimme contains; move /contains_to_prenex_instantiation.
gimme lc => H_lc.
move /(_ H_lc) => [f [? [H_f H_f2]]].
exists (fun n => match f n with | Some u => u | _ => one end); simpl.
split.
revert dependent ts.
revert dependent u.
revert dependent ds.
elim.
(*no equations*)
simpl.
intros; subst.
gimme chain; inversion; auto.
gimme contains; inversion.
(*at least one equation*)
case.
{
move => x.
simpl. intros * => IH; intros; subst.
decompose_chain.
decompose_lc.
compute.
have : exists u, f x = Some u ∧ lc 0 u by auto.
move => [? [-> ?]].
do ? f_equal.
apply : IH => //.
}
{
move => x y z.
simpl. intros * => IH; intros; subst.
decompose_chain.
decompose_lc.
compute.
have : exists ux, f x = Some ux ∧ lc 0 ux by auto.
have : exists uy, f y = Some uy ∧ lc 0 uy by auto.
have : exists uz, f z = Some uz ∧ lc 0 uz by auto.
move => [? [-> ?]] [? [-> ?]] [? [-> ?]].
do ? f_equal.
apply : IH => //.
}
{
move => x y z.
simpl. intros * => IH; intros; subst.
decompose_chain.
decompose_lc.
compute.
have : exists ux, f x = Some ux ∧ lc 0 ux by auto.
have : exists uy, f y = Some uy ∧ lc 0 uy by auto.
have : exists uz, f z = Some uz ∧ lc 0 uz by auto.
move => [? [-> ?]] [? [-> ?]] [? [-> ?]].
do ? f_equal.
apply : IH => //.
}
move => x Hx.
have : f x = None by auto.
by move => ->.
Qed.
Lemma inspect_chain_diophantines_aux : forall (m : nat) (params : list formula) (ds : list diophantine),
lc m (represent_diophantines ds) ->
chain (quantify_formula m (arr (arr triangle triangle) (represent_diophantines ds))) (get_label triangle) params ->
exists (f : nat -> formula),
tail params = flat_map (represent_diophantine_repr f) ds.
Proof.
(*no more induction on n*)
intros.
gimme chain; simpl; inversion.
gimme contains. simpl.
move /quantified_arrow_not_contains_atom => //.
gimme contains; move /contains_to_prenex_instantiation.
gimme lc => H_lc.
move /(_ H_lc) => [f [? [H_f ?]]].
exists (fun n => match f n with | Some u => u | _ => one end); simpl.
revert dependent ts.
revert dependent u.
revert dependent ds.
elim.
(*no equations*)
simpl.
intros; subst.
gimme chain; inversion; auto.
gimme contains; inversion.
(*at least one equation*)
case.
{
move => x.
simpl. intros * => IH; intros; subst.
decompose_chain.
decompose_lc.
compute.
have : exists u, f x = Some u ∧ lc 0 u by auto.
move => [? [-> ?]].
do ? f_equal.
apply : IH => //.
}
{
move => x y z.
simpl. intros * => IH; intros; subst.
decompose_chain.
decompose_lc.
compute.
have : exists ux, f x = Some ux ∧ lc 0 ux by auto.
have : exists uy, f y = Some uy ∧ lc 0 uy by auto.
have : exists uz, f z = Some uz ∧ lc 0 uz by auto.
move => [? [-> ?]] [? [-> ?]] [? [-> ?]].
do ? f_equal.
apply : IH => //.
}
{
move => x y z.
simpl. intros * => IH; intros; subst.
decompose_chain.
decompose_lc.
compute.
have : exists ux, f x = Some ux ∧ lc 0 ux by auto.
have : exists uy, f y = Some uy ∧ lc 0 uy by auto.
have : exists uz, f z = Some uz ∧ lc 0 uz by auto.
move => [? [-> ?]] [? [-> ?]] [? [-> ?]].
do ? f_equal.
apply : IH => //.
}
Qed.
Lemma inspect_chain_diophantines : forall (params : list formula) (ds : list diophantine),
chain (s_x_d ds) (get_label triangle) params ->
exists (f : nat -> formula),
tail params = flat_map (represent_diophantine_repr f) ds.
Proof.
eauto using inspect_chain_diophantines_aux, lc_represent_diophantines.
Qed.
Lemma inspect_chain_diophantines_one : forall (params : list formula) (ds : list diophantine),
chain (s_x_d ds) (get_label triangle) params ->
exists (f : nat -> formula),
tail params = flat_map (represent_diophantine_repr f) ds /\ (forall (x : nat), diophantine_variable_bound ds <= x -> f x = one).
Proof.
eauto using inspect_chain_diophantines_aux_one, lc_represent_diophantines.
Qed.
(*HintDb containing instantiation simplification rules*)
Create HintDb simplify_formula.
Lemma simplify_instantiate_arrow : forall s t u n, instantiate s n (arr t u) = arr (instantiate s n t) (instantiate s n u).
Proof. reflexivity. Qed.
Lemma simplify_instantiate_var_eq : forall s n m, n = m -> instantiate s n (var m) = s.
Proof. intros *. move => ->. unfold instantiate. inspect_eqb. reflexivity. Qed.
Lemma simplify_instantiate_var_neq : forall s n m, n <> m -> instantiate s n (var m) = var m.
Proof. intros *. move => ?. unfold instantiate. inspect_eqb. reflexivity. Qed.
Lemma simplify_instantiate_quant : forall s n t, instantiate s n (quant t) = quant (instantiate s (1+n) t).
Proof. reflexivity. Qed.
Lemma simplify_instantiate_atom : forall (t : formula) s n, (exists a, t = atom a) -> instantiate s n t = t.
Proof. intros *. case => a. move => ->. reflexivity. Qed.
Lemma simplify_instantiate_U : forall (s t : formula) (n : nat), instantiate s n (U t) = U (instantiate s n t).
Proof. auto. Qed.
Lemma simplify_instantiate_S : forall (s t1 t2 t3 : formula) (n : nat), instantiate s n (S t1 t2 t3) = S (instantiate s n t1) (instantiate s n t2) (instantiate s n t3).
Proof. auto. Qed.
Lemma simplify_instantiate_P : forall (s t1 t2 t3 : formula) (n : nat), instantiate s n (P t1 t2 t3) = P (instantiate s n t1) (instantiate s n t2) (instantiate s n t3).
Proof. auto. Qed.
Lemma simplify_atom_get_label : forall t, (exists a, t = atom a) -> (atom (get_label t)) = t.
Proof. intros *. case => a. move => ->. reflexivity. Qed.
Lemma simplify_instantiate_one : forall s n, instantiate s n one = one.
Proof. intros; reflexivity. Qed.
Lemma simplify_instantiate_triangle : forall s n, instantiate s n triangle = triangle.
Proof. intros; reflexivity. Qed.
Hint Rewrite simplify_instantiate_U simplify_instantiate_S simplify_instantiate_P : simplify_formula.
Hint Rewrite simplify_instantiate_arrow : simplify_formula.
Hint Rewrite simplify_instantiate_var_eq simplify_instantiate_var_neq using omega : simplify_formula.
Hint Rewrite simplify_instantiate_quant using omega : simplify_formula.
Hint Rewrite @simplify_instantiate_atom using (eexists; reflexivity) : simplify_formula.
Hint Rewrite simplify_instantiate_one simplify_instantiate_triangle : simplify_formula.
Hint Rewrite @simplify_atom_get_label using (eexists; reflexivity) : simplify_formula.
Hint Rewrite Lc.instantiate_eq0 using done : simplify_formula.