-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFormula.v
145 lines (112 loc) · 4.55 KB
/
Formula.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
Load Common.
Require Import Bool.
(*used for free variables*)
Definition label : Set := nat * nat.
Module Label.
Lemma eq_dec : forall (a b : label), {a = b} + {a <> b}.
Proof.
case => a1 a2; case => b1 b2.
have := Nat.eq_dec a1 b1; have := Nat.eq_dec a2 b2.
case => ?; case => ?; first auto.
all : right; case; auto.
Qed.
Definition eqb (a : label) (b : label) : bool :=
match a, b with
| (a1, a2), (b1, b2) => (a1 =? b1) && (a2 =? b2)
end.
Lemma eqb_eq : forall (a b : label), (eqb a b = true) <-> a = b.
Proof.
move => a b.
constructor.
rewrite -> (surjective_pairing a), (surjective_pairing b); cbn.
case /andb_true_iff.
by move /Nat.eqb_eq => -> /Nat.eqb_eq => ->.
move => ->.
rewrite -> (surjective_pairing b); cbn.
by rewrite <- ? beq_nat_refl.
Qed.
Lemma neq_neqb : forall (a b : label), a <> b -> (eqb a b = false).
Proof.
case => a1 a2; case => b1 b2; cbn.
have := Nat.eq_dec a1 b1; have := Nat.eq_dec a2 b2.
case => ?; case => ?; first (by subst); move => _.
all : match goal with [H : _ <> _ |- _] => move /Nat.eqb_neq : H => -> end.
all : auto using Bool.andb_false_r.
Qed.
End Label.
Inductive formula : Set :=
| var : nat -> formula
| atom : label -> formula
| arr : formula -> formula -> formula
| quant : formula -> formula.
Definition get_label (s : formula) : label :=
match s with
| atom a => a
| _ => (0,0) (*to be replaced by some inhabitant of label or make function partial*)
end.
Fixpoint substitute_label (a b : label) (t : formula) : formula :=
match t with
| (atom c) => if Label.eqb a c then (atom b) else t
| (var _) => t
| (arr s' t') => arr (substitute_label a b s') (substitute_label a b t')
| (quant t') => quant (substitute_label a b t')
end.
(*a is bindable in t if it does not appear free in t*)
Inductive fresh_in (a: label) : formula -> Prop :=
| fresh_in_var : forall (n : nat), fresh_in a (var n)
| fresh_in_atom : forall (b: label), a ≠ b -> fresh_in a (atom b)
| fresh_in_arr : forall (s t: formula), fresh_in a s -> fresh_in a t -> fresh_in a (arr s t)
| fresh_in_quant : forall (s: formula), fresh_in a s -> fresh_in a (quant s).
(*
(*replace free occurrences of a in t by index n*)
Fixpoint bind (a: label) (n : nat) (t : formula) : formula :=
match t with
| (atom b) => if Label.eqb a b then var n else t
| (var _) => t
| (arr s t) => arr (bind a n s) (bind a n t)
| (quant t) => quant (bind a (S n) t)
end.
(*replace all occurrences of atom a by s in t*)
Fixpoint substitute (a : label) (s t : formula) : formula :=
match t with
| (atom c) => if Label.eqb a c then s else t
| (var _) => t
| (arr s' t') => arr (substitute a s s') (substitute a s t')
| (quant t') => quant (substitute a s t')
end.
*)
(*instantiate s 0 t replaces the outermost bound variable in t by s, i.e. t[0/s]*)
Fixpoint instantiate (s: formula) (n : nat) (t : formula) : formula :=
match t with
| (atom _) => t
| (var m) => if n =? m then s else t
| (arr s' t') => arr (instantiate s n s') (instantiate s n t')
| (quant t') => quant (instantiate s (S n) t')
end.
Fixpoint instantiate_prenex (f : nat -> option formula) (t : formula) : formula :=
match t with
| (atom _) => t
| (var m) => match f m with | Some s => s | None => t end
| (arr s' t') => arr (instantiate_prenex f s') (instantiate_prenex f t')
| (quant t') => quant (instantiate_prenex (fun n => match n with | 0 => None | S n' => f n' end) t')
end.
(*locally closed up to n, lc 0 are well-formed formulae*)
Inductive lc : nat -> formula -> Prop :=
| lc_var : forall (m n: nat), n < m -> lc m (var n)
| lc_atom : forall (n: nat) (a: label), lc n (atom a)
| lc_arr : forall (n: nat) (s t: formula), lc n s -> lc n t -> lc n (arr s t)
| lc_quant : forall (n: nat) (t: formula), lc (S n) t -> lc n (quant t).
(*repeated instantiation by locally closed formulae*)
Inductive contains : formula -> formula -> Prop :=
| contains_rfl : forall (s: formula), contains s s
| contains_trans : forall (s t u: formula), lc 0 s -> contains (instantiate s 0 u) t -> contains (quant u) t.
(*chain s a params morally means that s can be instanciated as p1 -> ... -> pn -> a*)
Inductive chain (s : formula) (a : label) : list formula -> Prop :=
| chain_nil : contains s (atom a) -> chain s a List.nil
| chain_cons : forall (t u: formula) (ts: list formula), contains s (arr t u) -> chain u a ts -> chain s a (t :: ts).
(*prepends n quantifiers to a given formula*)
Fixpoint quantify_formula n t : formula :=
match n with
| 0 => t
| Datatypes.S n' => quant (quantify_formula n' t)
end.