-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMiscFacts.v
42 lines (34 loc) · 960 Bytes
/
MiscFacts.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Load Common.
Require Import PeanoNat.
Require Import Psatz.
Require Import UserTactics.
(*
Lemma if_eq : forall (f : nat -> nat) (x y : nat), (if y =? x then f x else f y) = f y.
Proof.
move => f x y.
have := Nat.eq_dec x y.
case; intros; inspect_eqb; auto.
Qed.
Lemma if_elim {T : Type} (P : T -> Prop) (m n : nat) (a b : nat -> nat -> T) :
P (a m n) -> P (b m n) -> P (if m =? n then a m n else b m n).
Proof.
intros.
case : (Nat.eq_dec m n); intros;
inspect_eqb; assumption.
Qed.
*)
Lemma if_fun {T U : Type}: forall A (f : T -> U) a b, (if A then f a else f b) = f (if A then a else b).
Proof.
case => //.
Qed.
Lemma fold_sum_gt : forall l n m, n > m -> fold_left Nat.add l n > m.
Proof.
elim; cbn; first auto.
move => n l IH k m H; cbn.
apply : IH. lia.
Qed.
Lemma split_domain : forall (x : nat) (P Q : nat -> Prop),
(forall (n : nat), (x = n \/ P n) -> Q n) <-> (Q x /\ (forall (n : nat), P n -> Q n)).
Proof.
firstorder (subst; done).
Qed.