-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsgRNACas9-AI.py
325 lines (294 loc) · 11 KB
/
sgRNACas9-AI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Date : 2022-02-21 11:13:33
# @Author : Muxiaoxiong
# @Email : [email protected]
# sgRNAcas9-AI Online Tool
# sgRNACas9-AI Offline Tool Version V2.2.1
# http://123.57.239.141:8080/home
import logging
import argparse
import datetime
import sys
import os
import regex as re
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from tensorflow.keras.models import load_model
import numpy as np
import pandas as pd
__version__ = "2.2.1"
logging.basicConfig(
format='%(levelname)-5s @ %(asctime)s:\n\t %(message)s \n',
datefmt='%a, %d %b %Y %H:%M:%S',
stream=sys.stderr,
filemode="w"
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
error = logger.critical
warn = logger.warning
debug = logger.debug
info = logger.info
dd={'A':'T','G':'C','T':'A','C':'G'}
cas_name=['eSpCas9','evoCas9','HypaCas9','Sniper-Cas9','SpCas9','SpCas9-HF1','SpCas9-NG','VRQR','xCas9']
def get_logo():
return (r'''
########################### WELCOME ##############################
# #
# sgRNACas9-AI #
# ---a program for prediction of sgRNA activity using deep learning #
# #
# Homepage: http://123.57.239.141:8080/home #
# Huazhong Agricultural University #
# Offline Tool Version V2.2.1 #
# LAST REVISED: 2022.06.06 #
# Support: #
# - SpCas9 #
# - evoCas9(1:1) #
# - HypaCas9 #
# - Sniper-Cas9 #
# - eSpCas9 #
# - SpCas9-HF1 #
# - SpCas9-NG #
# - VRQR #
# - xCas9 #
###################################################################
''')
def get_header():
"""
Creates the header string with the header_str
"""
term_width = 65
logo = get_logo()
description_str = logo+ "\n"
description_str += ('[sgRNAcas9-AI version ' + __version__ + ']').center(term_width)+'\n'
return description_str
def check_src():
if not os.path.exists('./bin/crisflash'):
if os.path.exists('src') and os.path.exists('Makefile'):
os.system('make')
return True
else:
warn('src folder or Makefile is missing')
sys.exit(1)
else:
return True
def check_model():
if os.path.exists('model'):
return True
else:
warn('The model file is missing')
sys.exit(1)
def load_gene(file):
info('Load %s'%file)
gene_dic={}
with open(file) as ff:
for line in ff:
line=line.strip()
if line.startswith('>'):
name=line.replace('>','')
gene_dic[name]=[]
else:
line=line.upper()
gene_dic[name].append(line)
return gene_dic
def Fasta_reverse(sequence):
#sequence reverse complement
sequence=sequence.upper()
sequence = sequence.replace('A', 't')
sequence = sequence.replace('T', 'a')
sequence = sequence.replace('C', 'g')
sequence = sequence.replace('G', 'c')
sequence = sequence.upper()
return sequence[::-1]
def encode(lines):
data=np.zeros((len(lines),23,4),dtype=int)
for index,seq in enumerate(lines):
for i,j in enumerate(seq):
if j =='A':
data[index,i,0]=1
elif j=='T':
data[index,i,1]=1
elif j=='C':
data[index,i,2]=1
elif j=='G':
data[index,i,3]=1
return data
def count_mismatch(mismatch,file):
"""
count sgRNA N20 mismatch number
ruturn dict
"""
if not os.path.exists('Temp.txt'):
#If there is no temporary file, the reason may be that the input target gene and reference genome sequences are not in standard FASTA format
error('File error, please check input file')
exit(1)
info('count %s off-target'%file)
seqdic={}
mismatch=int(mismatch)
with open('Temp.txt') as ff:
for line in ff:
line=line.strip()
test=line.split()
seq=test[0][:20]
num=int(test[-1])
if seqdic.get(seq):
seqdic[seq][num]+=1
else:
seqdic[seq]=[0 for i in range(mismatch+1)]
os.remove('Temp.txt')
return seqdic
############################################################################
############################################################################
def cal_off(genefile,genomefile,pam,mismatch,process):
"""
run crisflash
"""
info('cal %s off-target'%genefile)
if os.path.exists('Temp.txt'):
os.remove('Temp.txt')
#update file
os.system('./bin/crisflash -g %s -s %s -o Temp.txt -m %s -p %s -C -t %s >log.txt'%(genomefile,genefile,mismatch,pam,process))
os.remove('log.txt')
def run(args):
"""
seqdic={N20:[0,0,0]}
genedic={'gene':[v1,v2]}
"""
seqdic=count_mismatch(args.mismatch,args.input)
genedic=load_gene(args.input)
#write title
out=open(args.output,'a+')
out.write('sgR_ID,sgR_seq+PAM,sgR_seq,PAM,strand,start,end,GC%,')
for i in range(int(args.mismatch)+1):
out.write('%sM,'%(i))
out.write('Total,')
if args.active !='':
out.write('4Ts_motif,sgR_efficiency\n')
else:
out.write('4Ts_motif\n')
pam=args.pam
if pam[0]=='N':
flag1=pam[1:]
flag2=[dd[i] for i in flag1]
flag2=''.join(flag2)
pattern1 = re.compile('.{21}%s'%flag1)
pattern2 = re.compile('%s.{21}'%flag2)
else:
flag1=pam
flag2=[dd[i] for i in flag1]
flag2=''.join(flag2)
pattern1 = re.compile('.{20}%s'%flag1)
pattern2 = re.compile('%s.{20}'%flag2)
info('output %s off-target'%args.input)
for key,value in genedic.items():
value=''.join(value)
sgRNA_L=pattern1.finditer(value,overlapped=True)
sgRNA_F=pattern2.finditer(value,overlapped=True)
count=0
for sgRNA in sgRNA_L:
count+=1
name=key+'_s_'+str(count)
start=sgRNA.start()
end=sgRNA.end()
seq=sgRNA.group()
N20=seq[:20]
_pam=seq[20:]
gcgc ='%.2f' % ((N20.count('C')+N20.count('G'))/20)
if seqdic.get(N20):
off_list=seqdic[N20]
total=sum(off_list)
out.write('%s,%s,%s,%s,%s,%s,%s,%s,'%(name,seq,N20,_pam,'+',start,end,gcgc))
for i in off_list:
out.write(str(i)+',')
out.write(str(total)+',')
if 'TTTT' in N20:
out.write('TTTT'+'\n')
else:
out.write('-'+'\n')
else:
out.write('%s,%s,%s,%s,%s,%s,%s,%s,'%(name,seq,N20,_pam,'+',start,end,gcgc))
for i in range(int(args.mismatch)+2):
out.write('0,')
if 'TTTT' in N20:
out.write('TTTT'+'\n')
else:
out.write('-'+'\n')
count=0
for sgRNA in sgRNA_F:
count+=1
name=key+'_a_'+str(count)
start=sgRNA.start()
end=sgRNA.end()
seq=Fasta_reverse(sgRNA.group())
N20=seq[:20]
_pam=seq[20:]
gcgc ='%.2f' % ((N20.count('C')+N20.count('G'))/20)
if seqdic.get(N20):
off_list=seqdic[N20]
total=sum(off_list)
out.write('%s,%s,%s,%s,%s,%s,%s,%s,'%(name,seq,N20,_pam,'-',start,end,gcgc))
for i in off_list:
out.write(str(i)+',')
out.write(str(total)+',')
if 'TTTT' in N20:
out.write('TTTT'+'\n')
else:
out.write('-'+'\n')
else:
out.write('%s,%s,%s,%s,%s,%s,%s,%s,'%(name,seq,N20,_pam,'-',start,end,gcgc))
for i in range(int(args.mismatch)+2):
out.write('0,')
if 'TTTT' in N20:
out.write('TTTT'+'\n')
else:
out.write('-'+'\n')
out.close()
if args.active !='':
model=load_model('./model/%s.h5'%(args.active))
data=pd.read_csv(args.output)
seq=encode(data['sgR_seq+PAM'])
prediction=model.predict(seq)
data['sgR_efficiency']=prediction
data.to_csv(args.output,index=False)
info('Done')
############################################################################
def main():
print(get_header())
parser = argparse.ArgumentParser(description='sgRNAcas9-AI Parameters')
parser.add_argument('--version', action='version', version='%(prog)s '+__version__)
parser.add_argument('-i', '--input', type=str, help='gene fast file', default='')
parser.add_argument('-g', '--genome', type=str, help='genome fast file', default='')
parser.add_argument('-a', '--active', type=str, help='Cas9 Type (default: SpCas9)', default='SpCas9')
parser.add_argument('-m', '--mismatch', type=str, help='mismatch of sgRNA off-target prediction(default: 3)', default='3')
parser.add_argument('-p', '--pam', type=str, help='Specify the pam to use for off-target analysis(default: NGG).', default='NGG')
parser.add_argument('-t', '--thread', type=str, help='Specify the number of processes to use for analysis.(default: 1)', default='1')
parser.add_argument('-o', '--output', help='Output to use for the analysis (default: result.csv)', default='result.csv')
args = parser.parse_args()
sys.stdout.flush()
#check parse_args
if not args.genome or not args.input:
parser.print_help()
exit(1)
#check model
if args.active !='' and args.active not in cas_name:
caninfo=''
for i in cas_name:
caninfo +=' - '+i+'\n'
error('Model name :%s unsupport\n Support:\n %s'%(args.active,caninfo))
exit(1)
#check outfile
if os.path.exists(args.output):
warn('%s exists,removing'%args.output)
os.remove(args.output)
# check dedependencies
info('Checking dependencies...')
if check_src() and check_model():
info('All the required dependencies are present!')
#All check is ok
#cal off-target
cal_off(args.input,args.genome,args.pam,args.mismatch,args.thread)
# #run
run(args)
if __name__ == '__main__':
main()