-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathkeyword_extractor.py
228 lines (203 loc) · 8.71 KB
/
keyword_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from itertools import combinations
from queue import Queue
from graph import Graph
from preprocessing import TextProcessor
from gensim.models import KeyedVectors
class KeywordExtractor:
"""
Extracts keywords from text using TextRank algorithm
"""
def __init__(self, word2vec=None):
self.preprocess = TextProcessor()
self.graph = Graph()
if word2vec:
print("Loading word2vec embedding...")
self.word2vec = KeyedVectors.load_word2vec_format(word2vec, binary=True)
print("Succesfully loaded word2vec embeddings!")
else:
self.word2vec = None
def init_graph(self):
self.preprocess = TextProcessor()
self.graph = Graph()
def extract(self, text, ratio=0.4, split=False, scores=False):
"""
:param: text: text data from which keywords are to be extracted
:return: list of keywords extracted from text
"""
self.init_graph()
words = self.preprocess.tokenize(text)
tokens = self.preprocess.clean_text(text)
for word, item in tokens.items():
if not self.graph.has_node(item.token):
self.graph.add_node(item.token)
self.__set_graph_edges(self.graph, tokens, words)
del words
KeywordExtractor.__remove_unreachable_nodes(self.graph)
if len(self.graph.nodes()) == 0:
return [] if split else ""
pagerank_scores = self.__textrank()
extracted_lemmas = KeywordExtractor.__extract_tokens(self.graph.nodes(), pagerank_scores, ratio)
lemmas_to_word = KeywordExtractor.__lemmas_to_words(tokens)
keywords = KeywordExtractor.__get_keywords_with_score(extracted_lemmas, lemmas_to_word)
combined_keywords = self.__get_combined_keywords(keywords, text.split())
return KeywordExtractor.__format_results(keywords, combined_keywords, split, scores)
def __textrank(self, initial_value=None, damping=0.85, convergence_threshold=0.0001):
"""Implementation of TextRank on a undirected graph"""
if not initial_value:
initial_value = 1.0 / len(self.graph.nodes())
scores = dict.fromkeys(self.graph.nodes(), initial_value)
iteration_quantity = 0
for iteration_number in range(100):
iteration_quantity += 1
convergence_achieved = 0
for i in self.graph.nodes():
rank = 1 - damping
for j in self.graph.neighbors(i):
neighbors_sum = sum(self.graph.edge_weight((j, k)) for k in self.graph.neighbors(j))
rank += damping * scores[j] * self.graph.edge_weight((j, i)) / neighbors_sum
if abs(scores[i] - rank) <= convergence_threshold:
convergence_achieved += 1
scores[i] = rank
if convergence_achieved == len(self.graph.nodes()):
break
return scores
@staticmethod
def __format_results(_keywords, combined_keywords, split, scores):
"""
:param _keywords:dict of keywords:scores
:param combined_keywords:list of word/s
"""
combined_keywords.sort(key=lambda w: KeywordExtractor.__get_average_score(w, _keywords), reverse=True)
if scores:
return [(word, KeywordExtractor.__get_average_score(word, _keywords)) for word in combined_keywords]
if split:
return combined_keywords
return "\n".join(combined_keywords)
@staticmethod
def __get_average_score(concept, _keywords):
"""Calculates average score"""
word_list = concept.split()
word_counter = 0
total = 0
for word in word_list:
total += _keywords[word]
word_counter += 1
return total / word_counter
def __strip_word(self, word):
"""Preprocesses given word"""
stripped_word_list = list(self.preprocess.tokenize(word))
return stripped_word_list[0] if stripped_word_list else ""
def __get_combined_keywords(self, _keywords, split_text):
"""
:param _keywords:dict of keywords:scores
:param split_text: list of strings
:return: combined_keywords:list
"""
result = []
_keywords = _keywords.copy()
len_text = len(split_text)
for i in range(len_text):
word = self.__strip_word(split_text[i])
if word in _keywords:
combined_word = [word]
if i + 1 == len_text:
result.append(word) # appends last word if keyword and doesn't iterate
for j in range(i + 1, len_text):
other_word = self.__strip_word(split_text[j])
if other_word in _keywords and other_word == split_text[j] \
and other_word not in combined_word:
combined_word.append(other_word)
else:
for keyword in combined_word:
_keywords.pop(keyword)
result.append(" ".join(combined_word))
break
return result
@staticmethod
def __get_keywords_with_score(extracted_lemmas, lemma_to_word):
"""
:param extracted_lemmas:list of tuples
:param lemma_to_word: dict of {lemma:list of words}
:return: dict of {keyword:score}
"""
keywords = {}
for score, lemma in extracted_lemmas:
keyword_list = lemma_to_word[lemma]
for keyword in keyword_list:
keywords[keyword] = score
return keywords
@staticmethod
def __lemmas_to_words(tokens):
"""Returns the corresponding words for the given lemmas"""
lemma_to_word = {}
for word, unit in tokens.items():
lemma = unit.token
if lemma in lemma_to_word:
lemma_to_word[lemma].append(word)
else:
lemma_to_word[lemma] = [word]
return lemma_to_word
@staticmethod
def __extract_tokens(lemmas, scores, ratio):
lemmas.sort(key=lambda s: scores[s], reverse=True)
length = len(lemmas) * ratio
return [(scores[lemmas[i]], lemmas[i],) for i in range(int(length))]
@staticmethod
def __remove_unreachable_nodes(graph):
for node in graph.nodes():
if sum(graph.edge_weight((node, other)) for other in graph.neighbors(node)) == 0:
graph.del_node(node)
def __set_graph_edges(self, graph, tokens, words):
self.__process_first_window(graph, tokens, words)
self.__process_text(graph, tokens, words)
def __process_first_window(self, graph, tokens, split_text):
first_window = KeywordExtractor.__get_first_window(split_text)
for word_a, word_b in combinations(first_window, 2):
self.__set_graph_edge(graph, tokens, word_a, word_b)
def __process_text(self, graph, tokens, split_text):
queue = KeywordExtractor.__init_queue(split_text)
for i in range(2, len(split_text)):
word = split_text[i]
self.__process_word(graph, tokens, queue, word)
KeywordExtractor.__update_queue(queue, word)
def __set_graph_edge(self, graph, tokens, word_a, word_b):
if word_a in tokens and word_b in tokens:
lemma_a = tokens[word_a].token
lemma_b = tokens[word_b].token
edge = (lemma_a, lemma_b)
if graph.has_node(lemma_a) and graph.has_node(lemma_b) and not graph.has_edge(edge):
if not self.word2vec:
graph.add_edge(edge)
else:
try:
similarity = self.word2vec.similarity(lemma_a, lemma_b)
if similarity < 0:
similarity = 0.0
except:
similarity = 0.2
graph.add_edge(edge, wt=similarity)
def __process_word(self, graph, tokens, queue, word):
for word_to_compare in KeywordExtractor.__queue_iterator(queue):
self.__set_graph_edge(graph, tokens, word, word_to_compare)
@staticmethod
def __get_first_window(split_text):
return split_text[:2]
@staticmethod
def __init_queue(split_text):
queue = Queue()
first_window = KeywordExtractor.__get_first_window(split_text)
for word in first_window[1:]:
queue.put(word)
return queue
@staticmethod
def __update_queue(queue, word):
queue.get()
queue.put(word)
assert queue.qsize() == 1
@staticmethod
def __queue_iterator(queue):
iterations = queue.qsize()
for i in range(iterations):
var = queue.get()
yield var
queue.put(var)