forked from xieqilu/Qilu-leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path41.WordBreak.cs
112 lines (98 loc) · 3.5 KB
/
41.WordBreak.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/**
* Given a string s and a dictionary of words dict,
* determine if s can be segmented into a space-separated sequence of one or more dictionary words.
For example, given
s = "leetcode",
dict = ["leet", "code"].
Return true because "leetcode" can be segmented as "leet code".
*/
/**
* Solution:
* Do not use Recursive solution to solve the problem, it's very inefficient.
* Use Iterative Dynamic Programming approach as follows:
*
* Use a bool array dp to keep track of which part of the input string is already matched.
* The size of bool array is the size of Set+1. And dp[i] is true means all the chars of
* s (input string) before s[i] is already matched. So initiliaze dp[0] as true, then we
* can start matching from s[0].
*
* Then iterate through each char of s, for each char s[i], check if dp[i] is true. If dp[i]
* is false, no need to do match from current position. If dp[i] is true, which means all the
* chars before s[i] are already matched. So we try to match chars from s[i].
*
* To match chars from s[i], we iterate through dict. For each string str, try to match
* s.substring(i,i+str.length()) with str. If matched, set dp[i+str.length()] to true and
* check if i+str.length() is equal to s.length(), if it is, then all chars of s are matched,
* we break the loop. If not matched, continue.
*
* After the above nested loop, return dp[s.length()], which indicates if all chars of s are matched
* or not.
*
*
* Time Complexity: O(n*m), n is the size of input string, m is the size of input dict
* Space Complexity: O(n), n is the size of input string.
*
* */
//This file contains two solutions: Naive/Recursive Approach And DP Approach
using System;
using System.Collections.Generic;
using System.Collections;
namespace WordBreak
{
class Finder
{
//Naive and Recursive Approach, Time: O(2^n), T(n) = m*T(n-a)
//similar to T(n) = T(n-1)+T(n-2), totally n levels of the recursive tree. so O(2^n)
public static bool RecursiveWordBreak(string str, HashSet<string> dict)
{
return RecursiveHelper (str, dict, 0);
}
private static bool RecursiveHelper(string str, HashSet<string> dict, int start)
{
if (start == str.Length) //Base Case, when reaching the end of str, return true
return true;
foreach (string s in dict) {
int len = s.Length;
int end = start + len;
if (end <= str.Length) {
if (str.Substring (start, len).Equals (s) && RecursiveHelper (str, dict, end))
return true;
}
}
return false;
}
//Dynamic Programming Approach, much better than recursive one. Time: O(n*m)
//n is the length of str, m is the length of dict
public static bool WordBreakDP(string str, HashSet<string> dict)
{
bool[] temp = new bool[str.Length+1];
temp [0] = true; //set initial state
for (int i = 0; i < str.Length; i++) {
if (temp [i]) {
foreach (string s in dict) {
int len = s.Length;
int end = i + len;
if (end <= str.Length && !temp [end]) {
if (str.Substring (i, len).Equals (s)) {
temp [end] = true;
if (end == str.Length)
return true;
}
}
}
}
}
return false; //last element of temp indicate if the whole str can be matched
}
}
class MainClass
{
public static void Main (string[] args)
{
HashSet<string> dict = new HashSet<string> (){ "ab", "le", "etcode", "ghj", "leet","code", "cod" };
string str = "leetcode";
Console.WriteLine (Finder.RecursiveWordBreak (str, dict));
Console.WriteLine (Finder.WordBreakDP (str, dict));
}
}
}