-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnav_discriminator.py
192 lines (173 loc) · 5.92 KB
/
nav_discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import torch.nn as nn
class EmbeddingRNN(nn.Module):
"""docstring for EmbeddingRNN"""
def __init__(self, input_size, hidden_size, final_size, device, use_features = False):
super(EmbeddingRNN, self).__init__()
self.use_features = use_features
self.hidden_size = hidden_size
self.device = device
# Create embedding
if not self.use_features:
self.conv_reduce = nn.Sequential(
nn.Conv2d(12,3,3), nn.ReLU(),
nn.Conv2d(3,1,3), nn.ReLU(),
)
self.embed = nn.Sequential(
nn.Linear(8*8,input_size), nn.ReLU()
)
# Recurrence
self.gru = nn.GRU(input_size, hidden_size)
self.out1 = nn.Sequential(
nn.Linear(hidden_size, int(hidden_size/2)), nn.ReLU(),
nn.Linear(int(hidden_size/2), int(hidden_size/4)), nn.ReLU(),
nn.Linear(int(hidden_size/4), 2))
self.out2 = nn.Sequential(
nn.Linear(hidden_size, int(hidden_size/2)), nn.ReLU(),
nn.Linear(int(hidden_size/2), int(hidden_size/4)), nn.ReLU(),
nn.Linear(int(hidden_size/4), final_size))
self.loss_fn = nn.CrossEntropyLoss(reduction="none")
def forward(self, inps, hidden):
if not self.use_features:
inps = torch.stack([ self.embed(self.conv_reduce(inp).view(-1,8*8)) for inp in inps ])
output, _ = self.gru(inps, hidden)
out1 = self.out1(output)
out2 = self.out2(output)
return [out1, out2], _
def initHidden(self, minibatch_size=1):
return torch.zeros(1, minibatch_size, int(self.hidden_size), device=self.device)
def get_loss(self, inps, targets1, targets2, flags1, flags2):
# Convert to numpy
loss1 = torch.zeros(1)
loss2 = torch.zeros(1)
inps = torch.from_numpy(inps).float()
targets1 = torch.from_numpy(targets1)
targets2 = torch.from_numpy(targets2)
flags1 = torch.from_numpy(flags1).float()
flags2 = torch.from_numpy(flags2).float()
# Cuda it up
if torch.cuda.is_available():
loss1 = loss1.cuda()
loss2 = loss2.cuda()
inps = inps.cuda()
targets1 = targets1.cuda()
targets2 = targets2.cuda()
flags1 = flags1.cuda()
flags2 = flags2.cuda()
hidden = self.initHidden(inps.shape[1])
[out1, out2], _ = self.forward(inps, hidden)
# Loss function
# Constructing loss, sequentially
seq_len = inps.shape[0]
for i in range(seq_len):
loss_i = self.loss_fn(out1[i], targets1[:,i])*flags1[:,i]
if flags1[:,i].sum() == 0:
loss1+= 0
else:
loss1+= loss_i.sum()
for i in range(seq_len):
loss_i = self.loss_fn(out2[i], targets2[:,i])*flags2[:,i]
if flags2[:,i].sum() == 0:
loss2+= 0
else:
loss2+= loss_i.sum()
return loss1/flags1.sum(), loss2/flags2.sum() # We can add hyperparameters here
def get_prediction(self, demo):
# Not ready yet
prediction = []
indices = []
hidden = self.initHidden(1)
for ind, state in enumerate(demo):
s_grid = fullstate(state)
[out1, out2], hidden = self.forward(torch.from_numpy(s_grid).unsqueeze(0).unsqueeze(0).float(), hidden)
if out1.argmax().item() == 1:
prediction.append(out2.argmax().item())
indices.append(ind)
hidden = self.initHidden(1)
return prediction, indices
class EmbeddingCNN(nn.Module):
"""docstring for EmbeddingRNN"""
def __init__(self, input_size, hidden_size, final_size, device, use_features = False):
super(EmbeddingCNN, self).__init__()
self.use_features = use_features
self.hidden_size = hidden_size
self.device = device
# Create embedding
if not self.use_features:
self.conv_reduce = nn.Sequential(
nn.Conv2d(12,3,3), nn.ReLU(),
nn.Conv2d(3,1,3), nn.ReLU(),
)
self.embed = nn.Sequential(
nn.Linear(8*8,input_size), nn.ReLU()
)
# Recurrence
self.pipe = nn.Linear(input_size, hidden_size)
self.out1 = nn.Sequential(
nn.Linear(hidden_size, int(hidden_size/2)), nn.ReLU(),
nn.Linear(int(hidden_size/2), int(hidden_size/4)), nn.ReLU(),
nn.Linear(int(hidden_size/4), 2))
self.out2 = nn.Sequential(
nn.Linear(hidden_size, int(hidden_size/2)), nn.ReLU(),
nn.Linear(int(hidden_size/2), int(hidden_size/4)), nn.ReLU(),
nn.Linear(int(hidden_size/4), final_size))
self.loss_fn = nn.CrossEntropyLoss(reduction="none")
def forward(self, inps):
if not self.use_features:
inps = torch.stack([ self.embed(self.conv_reduce(inp).view(-1,8*8)) for inp in inps ])
output = nn.ReLU()(self.pipe(inps))
out1 = self.out1(output)
out2 = self.out2(output)
return [out1, out2]
def get_loss(self, inps, targets1, targets2, flags1, flags2):
# Convert to numpy
loss1 = torch.zeros(1)
loss2 = torch.zeros(1)
inps = torch.from_numpy(inps).float()
targets1 = torch.from_numpy(targets1)
targets2 = torch.from_numpy(targets2)
flags1 = torch.from_numpy(flags1).float()
flags2 = torch.from_numpy(flags2).float()
# Cuda it up
if torch.cuda.is_available():
loss1 = loss1.cuda()
loss2 = loss2.cuda()
inps = inps.cuda()
targets1 = targets1.cuda()
targets2 = targets2.cuda()
flags1 = flags1.cuda()
flags2 = flags2.cuda()
[out1, out2] = self.forward(inps)
# Loss function
# Constructing loss, sequentially
seq_len = inps.shape[0]
for i in range(seq_len):
loss_i = self.loss_fn(out1[i], targets1[:,i])*flags1[:,i]
if flags1[:,i].sum() == 0:
loss1+= 0
else:
loss1+= loss_i.sum()
for i in range(seq_len):
loss_i = self.loss_fn(out2[i], targets2[:,i])*flags2[:,i]
if flags2[:,i].sum() == 0:
loss2+= 0
else:
loss2+= loss_i.sum()
return loss1/flags1.sum(), loss2/flags2.sum() # We can add hyperparameters here
def get_prediction(self, demo):
# Not ready yet
prediction = []
indices = []
hidden = self.initHidden(1)
for ind, state in enumerate(demo):
s_grid = fullstate(state)
[out1, out2], hidden = self.forward(torch.from_numpy(s_grid).unsqueeze(0).unsqueeze(0).float(), hidden)
if out1.argmax().item() == 1:
prediction.append(out2.argmax().item())
indices.append(ind)
hidden = self.initHidden(1)
return prediction, indices
def main():
embedding = EmbeddingRNN()
if __name__ == "__main__":
main()