-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_planning_RL.py
376 lines (294 loc) · 12.9 KB
/
test_planning_RL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import random
import os, pickle
import math, time
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple
from itertools import count
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as T
from system1 import *
# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
Transition = namedtuple('Transition',
('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.position = 0
def push(self, *args):
"""Saves a transition."""
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.position] = Transition(*args)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
class DQN(nn.Module):
def __init__(self, h, w, outputs):
super(DQN, self).__init__()
self.conv1 = nn.Conv2d(1, 3, kernel_size=4, stride=2)
self.bn1 = nn.BatchNorm2d(3)
self.conv2 = nn.Conv2d(3, 1, kernel_size=4, stride=1)
self.bn2 = nn.BatchNorm2d(1)
#self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2)
#self.bn3 = nn.BatchNorm2d(32)
# Number of Linear input connections depends on output of conv2d layers
# and therefore the input image size, so compute it.
#def conv2d_size_out(size, kernel_size = 5, stride = 2):
# return (size - (kernel_size - 1) - 1) // stride + 1
#convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w)))
#convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h)))
linear_input_size = 4 #convw * convh * 32
self.head = nn.Linear(linear_input_size, outputs)
# Called with either one element to determine next action, or a batch
# during optimization. Returns tensor([[left0exp,right0exp]...]).
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
#x = F.relu(self.bn3(self.conv3(x)))
#import ipdb; ipdb.set_trace()
return self.head(x.view(x.size(0), -1))
BATCH_SIZE = 128
GAMMA = 0.999
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 200
TARGET_UPDATE = 10
# Get screen size so that we can initialize layers correctly based on shape
# returned from AI gym. Typical dimensions at this point are close to 3x40x90
# which is the result of a clamped and down-scaled render buffer in get_screen()
screen_height = 10
screen_width = 10
# Get number of actions from gym action space
n_actions = 10
policy_net = DQN(screen_height, screen_width, n_actions).to(device)
target_net = DQN(screen_height, screen_width, n_actions).to(device)
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
optimizer = optim.RMSprop(policy_net.parameters())
memory = ReplayMemory(10000)
steps_done = 0
load_prev_model = False
if os.path.exists("mytraining_RL_1.pt") and load_prev_model:
checkpoint = torch.load('mytraining_RL_1.pt')
policy_net.load_state_dict(checkpoint['state_dict'])
target_net.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
def select_action(state):
global steps_done
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
# t.max(1) will return largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
return policy_net(state).max(1)[1].view(1, 1)
else:
return torch.tensor([[random.randrange(n_actions)]], device=device, dtype=torch.long)
episode_durations = []
def optimize_model():
if len(memory) < BATCH_SIZE:
return
transitions = memory.sample(BATCH_SIZE)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
batch.next_state)), device=device, dtype=torch.bool)
non_final_next_states = torch.cat([s for s in batch.next_state
if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = policy_net(state_batch).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = torch.zeros(BATCH_SIZE, device=device)
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0].detach()
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
loss = F.smooth_l1_loss(state_action_values, expected_state_action_values.unsqueeze(1))
# Optimize the model
optimizer.zero_grad()
loss.backward()
for param in policy_net.parameters():
param.grad.data.clamp_(-1, 1)
optimizer.step()
demo_type_strings = ["1layer", "2layer", "3layer", "gem_gold", "grass_gold", "iron_gold", "stone_gold", "water_gold", "wood_gold"]
demos = {}
for demo_string in demo_type_strings:
demos[demo_string] = pickle.load(open("demos_" + demo_string + ".pk", "rb"))
system1 = System1()
train_model = False
num_episodes = 50
for i_episode in range(num_episodes):
if not train_model:
break
# Initialize the environment and state
print("Episode: ", i_episode)
actual_state = np.random.choice(demos[np.random.choice(demo_type_strings)]['1layer'])[0]
current_screen = torch.tensor(system1.observation_function(fullstate(actual_state)))\
.unsqueeze(0).unsqueeze(0).type(torch.float32)
last_screen = torch.tensor(system1.observation_function(fullstate(actual_state)))\
.unsqueeze(0).unsqueeze(0).type(torch.float32)
state = current_screen - last_screen
running_reward = 0.0
for t in count():
# Select and perform an action
action = select_action(state)
done_skill = False
skill_seq = []
possible_objects = np.where(current_screen[0][0] == action.item() + 3)
for skill_param_x, skill_param_y in zip(possible_objects[0], possible_objects[1]):
if len(current_screen.shape) == 2:
current_screen = torch.tensor(current_screen).unsqueeze(0).unsqueeze(0).type(torch.float32)
if len(last_screen.shape) == 2:
last_screen = torch.tensor(last_screen).unsqueeze(0).unsqueeze(0).type(torch.float32)
try:
pos_x, pos_y = np.where(current_screen[0][0] == 1)
except:
import ipdb; ipdb.set_trace()
if done_skill:
break
try:
action_seq = system1.use_object(current_screen[0][0], (pos_x[0], pos_y[0]), (skill_param_x, skill_param_y))
if len(action_seq) > 0 and action_seq[-1] == 4:
done_skill = True
#print(action_seq)
for a in action_seq:
_, actual_state = actual_state.step(a)
current_screen = system1.observation_function(fullstate(actual_state))
skill_seq.append(action.item() + 3)
break
except:
#print("Skill_params: {} failed".format((skill_param_x, skill_param_y)))
pass
# Observe new state
last_screen = current_screen
current_screen = torch.tensor(system1.observation_function(fullstate(actual_state)))\
.unsqueeze(0).unsqueeze(0).type(torch.float32)
reward = 1 if actual_state.inventory[10] > 0 else 0
if reward == 1:
done = True
else:
done = False
if not done:
if len(current_screen.shape) == 2:
current_screen = torch.tensor(current_screen).unsqueeze(0).unsqueeze(0).type(torch.float32)
if len(last_screen.shape) == 2:
last_screen = torch.tensor(last_screen).unsqueeze(0).unsqueeze(0).type(torch.float32)
try:
next_state = current_screen - last_screen
except:
import ipdb; ipdb.set_trace()
else:
next_state = None
# Store the transition in memory
memory.push(state, action, next_state, torch.tensor([reward]).type(torch.float32))
# Move to the next state
state = next_state
running_reward += reward
if t % 50 == 49:
print("Episode: {}; Count:{}; Running reward: {}".format(i_episode, t, running_reward/50))
running_reward = 0.0
# Perform one step of the optimization (on the target network)
optimize_model()
if done or t > 3000:
episode_durations.append(t + 1)
#plot_durations()
break
# Update the target network, copying all weights and biases in DQN
if i_episode % TARGET_UPDATE == 0:
target_net.load_state_dict(policy_net.state_dict())
torch.save({'state_dict': policy_net.state_dict(), 'optimizer' : optimizer.state_dict()}, \
'mytraining_RL_2.pt')
if train_model:
print('Complete')
actual_state.render()
#Testing
test_env = pickle.load(open("maps__test.pk", "rb"))
train_env = pickle.load(open("maps__train.pk", "rb"))
success = 0
success_cases = []
failure = 0
failure_cases = []
total_time = 0
for i, env in enumerate(train_env):
#for i, env in enumerate(test_env):
start = time.time()
state = env
observable_env = system1.observation_function(fullstate(state))
state.render()
state.render()
#import ipdb; ipdb.set_trace()
print("\n\n\n\nEnvironment number: {}\n\n\n\n\n".format(i))
skill_seq = []
sequence_length = 0
current_screen = torch.tensor(observable_env).unsqueeze(0).unsqueeze(0).type(torch.float32)
last_screen = torch.tensor(observable_env).unsqueeze(0).unsqueeze(0).type(torch.float32)
state_diff = current_screen - last_screen
for _ in range(25): # Max skills
action = select_action(state_diff)
observable_env = system1.observation_function(fullstate(state))
last_screen = current_screen
current_screen = torch.tensor(observable_env).unsqueeze(0).unsqueeze(0).type(torch.float32)
state_diff = current_screen - last_screen
done = False
possible_objects = np.where(observable_env == action.item() + 3)
for skill_param_x, skill_param_y in zip(possible_objects[0], possible_objects[1]):
pos_x, pos_y = np.where(observable_env == 1)
if done:
break
try:
action_seq = system1.use_object(observable_env, (pos_x[0], pos_y[0]), (skill_param_x, skill_param_y))
if len(action_seq) > 0 and action_seq[-1] == 4:
done = True
for a in action_seq:
_, state = state.step(a)
sequence_length += 1
skill_seq.append(action.item() + 3)
break
except:
print("Skill_params: {} failed".format((skill_param_x, skill_param_y)))
pass
if state.inventory[10] > 0:
end = time.time()
success += 1
success_cases.append((i, sequence_length))
total_time += end - start
break
if state.inventory[10] == 0:
failure += 1
failure_cases.append(i)
state.render()
state.render()
print("\n\n\n\n\n")
print(skill_seq)
print("\n\n\n\n")
for s in success_cases: print(s)
if success > 0:
print("Avg. time taken: {}, Success:{}, Failure:{}".format(total_time/success, success, failure))
else:
print("Success:{}, Failure:{}".format(success, failure))
import ipdb; ipdb.set_trace()