-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmain.go
170 lines (144 loc) · 4.84 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// This example shows how to broadcast messages efficiently using Chord spanning
// tree. Naive broadcast (push) algorithm requires each node to send and receive
// the same message O(logN) times. This can be reduced to K times but it's still
// bandwidth inefficient.
// Using spanning tree structure this can be greatly reduced such that each node
// only send the message once (on average) and receive it once, thus reducing
// the total message count from O(N*logN) to N, at the cost of less robustness
// when topology is changing or there are faulty/malicious nodes. Broadcast
// latency is still near optimal as it takes at most log_2(N) steps to reach the
// whole network. This is suitable when message to be broadcasted is large and
// bandwidth is the bottleneck.
// Message redundancy increase approximately linearly with NumFingerSuccessors.
// Higher redundancy uses more bandwidth but gives the more robustness.
// Run with default options: go run main.go
// Show usage: go run main.go -h
package main
import (
"flag"
pbmsg "github.com/nknorg/nnet/protobuf/message"
"sync"
"time"
"github.com/nknorg/nnet"
"github.com/nknorg/nnet/log"
"github.com/nknorg/nnet/node"
"github.com/nknorg/nnet/overlay/routing"
"github.com/nknorg/nnet/util"
"google.golang.org/protobuf/proto"
)
func create(transport string, port uint16, id []byte, numFingerSuccessors uint32) (*nnet.NNet, error) {
conf := &nnet.Config{
Port: port,
Transport: transport,
BaseStabilizeInterval: 233 * time.Millisecond,
NumFingerSuccessors: numFingerSuccessors,
}
nn, err := nnet.NewNNet(id, conf)
if err != nil {
return nil, err
}
return nn, nil
}
func main() {
transportPtr := flag.String("t", "tcp", "transport type, tcp or kcp")
numNodesPtr := flag.Int("n", 10, "number of nodes")
numFingerSuccessorsPtr := flag.Uint("k", 1, "number of finger successors (also tree message redundancy)")
flag.Parse()
if *numNodesPtr < 1 {
log.Error("Number of nodes must be greater than 0")
return
}
if *numFingerSuccessorsPtr < 1 {
log.Error("Number of finger successors must be greater than 0")
return
}
const createPort uint16 = 23333
var nn *nnet.NNet
var id []byte
var err error
var pushMsgCount, treeMsgCount int
var msgCountLock sync.Mutex
nnets := make([]*nnet.NNet, 0)
for i := 0; i < *numNodesPtr; i++ {
id, err = util.RandBytes(32)
if err != nil {
log.Error(err)
return
}
nn, err = create(*transportPtr, createPort+uint16(i), id, uint32(*numFingerSuccessorsPtr))
if err != nil {
log.Error(err)
return
}
nn.MustApplyMiddleware(routing.RemoteMessageRouted{func(remoteMessage *node.RemoteMessage, localNode *node.LocalNode, remoteNodes []*node.RemoteNode) (*node.RemoteMessage, *node.LocalNode, []*node.RemoteNode, bool) {
if remoteMessage.Msg.MessageType == pbmsg.MessageType_BYTES {
msgBody := &pbmsg.Bytes{}
err = proto.Unmarshal(remoteMessage.Msg.Message, msgBody)
if err != nil {
log.Error(err)
}
msgCountLock.Lock()
switch remoteMessage.Msg.RoutingType {
case pbmsg.RoutingType_BROADCAST_PUSH:
pushMsgCount += len(remoteNodes)
log.Infof("Receive broadcast push message \"%s\" from %x", string(msgBody.Data), remoteMessage.Msg.SrcId)
case pbmsg.RoutingType_BROADCAST_TREE:
treeMsgCount += len(remoteNodes)
log.Infof("Receive broadcast tree message \"%s\" from %x", string(msgBody.Data), remoteMessage.Msg.SrcId)
}
msgCountLock.Unlock()
}
return remoteMessage, localNode, remoteNodes, true
}, 0})
nnets = append(nnets, nn)
}
for i := 0; i < len(nnets); i++ {
time.Sleep(112358 * time.Microsecond)
err = nnets[i].Start(i == 0)
if err != nil {
log.Error(err)
return
}
if i > 0 {
err = nnets[i].Join(nnets[0].GetLocalNode().Addr)
if err != nil {
log.Error(err)
return
}
}
}
time.Sleep(time.Duration(*numNodesPtr/5) * time.Second)
for i := 3; i > 0; i-- {
log.Infof("Sending broadcast push message in %d seconds", i)
time.Sleep(time.Second)
}
_, err = nnets[0].SendBytesBroadcastAsync(
[]byte("This message should be received by EVERYONE many times!"),
pbmsg.RoutingType_BROADCAST_PUSH,
)
if err != nil {
log.Error(err)
return
}
time.Sleep(time.Second)
for i := 3; i > 0; i-- {
log.Infof("Sending broadcast tree message in %d seconds", i)
time.Sleep(time.Second)
}
_, err = nnets[0].SendBytesBroadcastAsync(
[]byte("This message should be received by EVERYONE almost once!"),
pbmsg.RoutingType_BROADCAST_TREE,
)
if err != nil {
log.Error(err)
return
}
time.Sleep(time.Second)
log.Info()
log.Info("==========================================")
log.Infof("Total nodes count: %d", len(nnets))
log.Infof("Total broadcast push message count: %d", pushMsgCount)
log.Infof("Total broadcast tree message count: %d", treeMsgCount)
log.Info("==========================================")
log.Info()
}