-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathStokes3D_multixpu.jl
199 lines (189 loc) · 10.8 KB
/
Stokes3D_multixpu.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
const USE_GPU = true # Use GPU? If this is set false, then no GPU needs to be available
using ParallelStencil
using ParallelStencil.FiniteDifferences3D
@static if USE_GPU
@init_parallel_stencil(CUDA, Float64, 3)
else
@init_parallel_stencil(Threads, Float64, 3)
end
using ImplicitGlobalGrid, Plots, Printf, Statistics, LinearAlgebra # ATTENTION: plotting fails inside plotting library if using flag '--math-mode=fast'.
import MPI
# Global reductions
mean_g(A) = (mean_l = mean(A); MPI.Allreduce(mean_l, MPI.SUM, MPI.COMM_WORLD)/MPI.Comm_size(MPI.COMM_WORLD))
maximum_g(A) = (max_l = maximum(A); MPI.Allreduce(max_l, MPI.MAX, MPI.COMM_WORLD))
# CPU functions
@views av_zi(A) = (A[2:end-1,2:end-1,2:end-2] .+ A[2:end-1,2:end-1,3:end-1]).*0.5
@views av_za(A) = (A[:,:,1:end-1] .+ A[:,:,2:end]).*0.5
@views inn(A) = A[2:end-1,2:end-1,2:end-1]
@parallel function compute_timesteps!(dτVx::Data.Array, dτVy::Data.Array, dτVz::Data.Array, dτPt::Data.Array, Mus::Data.Array, Vsc::Data.Number, Ptsc::Data.Number, min_dxyz2::Data.Number, max_nxyz)
@all(dτVx) = Vsc*min_dxyz2/@av_xi(Mus)/6.1
@all(dτVy) = Vsc*min_dxyz2/@av_yi(Mus)/6.1
@all(dτVz) = Vsc*min_dxyz2/@av_zi(Mus)/6.1
@all(dτPt) = Ptsc*6.1*@all(Mus)/max_nxyz
return
end
@parallel function compute_P!(∇V::Data.Array, Pt::Data.Array, Vx::Data.Array, Vy::Data.Array, Vz::Data.Array, dτPt::Data.Array, dx::Data.Number, dy::Data.Number, dz::Data.Number)
@all(∇V) = @d_xa(Vx)/dx + @d_ya(Vy)/dy + @d_za(Vz)/dz
@all(Pt) = @all(Pt) - @all(dτPt)*@all(∇V)
return
end
@parallel function compute_τ!(∇V::Data.Array, τxx::Data.Array, τyy::Data.Array, τzz::Data.Array, τxy::Data.Array, τxz::Data.Array, τyz::Data.Array, Vx::Data.Array, Vy::Data.Array, Vz::Data.Array, Mus::Data.Array, dx::Data.Number, dy::Data.Number, dz::Data.Number)
@all(τxx) = 2.0*@inn_yz(Mus)*(@d_xi(Vx)/dx - 1.0/3.0*@inn_yz(∇V))
@all(τyy) = 2.0*@inn_xz(Mus)*(@d_yi(Vy)/dy - 1.0/3.0*@inn_xz(∇V))
@all(τzz) = 2.0*@inn_xy(Mus)*(@d_zi(Vz)/dz - 1.0/3.0*@inn_xy(∇V))
@all(τxy) = 2.0*@av_xyi(Mus)*(0.5*(@d_yi(Vx)/dy + @d_xi(Vy)/dx))
@all(τxz) = 2.0*@av_xzi(Mus)*(0.5*(@d_zi(Vx)/dz + @d_xi(Vz)/dx))
@all(τyz) = 2.0*@av_yzi(Mus)*(0.5*(@d_zi(Vy)/dz + @d_yi(Vz)/dy))
return
end
@parallel function compute_dV!(Rx::Data.Array, Ry::Data.Array, Rz::Data.Array, dVxdτ::Data.Array, dVydτ::Data.Array, dVzdτ::Data.Array, Pt::Data.Array, Rog::Data.Array, τxx::Data.Array, τyy::Data.Array, τzz::Data.Array, τxy::Data.Array, τxz::Data.Array, τyz::Data.Array, dampX::Data.Number, dampY::Data.Number, dampZ::Data.Number, dx::Data.Number, dy::Data.Number, dz::Data.Number)
@all(Rx) = @d_xa(τxx)/dx + @d_ya(τxy)/dy + @d_za(τxz)/dz - @d_xi(Pt)/dx
@all(Ry) = @d_ya(τyy)/dy + @d_xa(τxy)/dx + @d_za(τyz)/dz - @d_yi(Pt)/dy
@all(Rz) = @d_za(τzz)/dz + @d_xa(τxz)/dx + @d_ya(τyz)/dy - @d_zi(Pt)/dz + @av_zi(Rog)
@all(dVxdτ) = dampX*@all(dVxdτ) + @all(Rx)
@all(dVydτ) = dampY*@all(dVydτ) + @all(Ry)
@all(dVzdτ) = dampZ*@all(dVzdτ) + @all(Rz)
return
end
@parallel function compute_V!(Vx::Data.Array, Vy::Data.Array, Vz::Data.Array, dVxdτ::Data.Array, dVydτ::Data.Array, dVzdτ::Data.Array, dτVx::Data.Array, dτVy::Data.Array, dτVz::Data.Array)
@inn(Vx) = @inn(Vx) + @all(dτVx)*@all(dVxdτ)
@inn(Vy) = @inn(Vy) + @all(dτVy)*@all(dVydτ)
@inn(Vz) = @inn(Vz) + @all(dτVz)*@all(dVzdτ)
return
end
@parallel_indices (iy,iz) function bc_x!(A::Data.Array)
A[ 1, iy, iz] = A[ 2, iy, iz]
A[end, iy, iz] = A[end-1, iy, iz]
return
end
@parallel_indices (ix,iz) function bc_y!(A::Data.Array)
A[ ix, 1, iz] = A[ ix, 2, iz]
A[ ix,end, iz] = A[ ix,end-1, iz]
return
end
@parallel_indices (ix,iy) function bc_z!(A::Data.Array)
A[ ix, iy, 1] = A[ ix, iy, 2]
A[ ix, iy,end] = A[ ix, iy,end-1]
return
end
##################################################
@views function Stokes3D()
# Physics
lx, ly, lz = 10.0, 10.0, 10.0 # domain extends
μs0 = 1.0 # matrix viscosity
μsi = 0.1 # inclusion viscosity
ρgi = 1.0 # inclusion density*gravity perturbation
# Numerics
iterMax = 20000 # maximum number of pseudo-transient iterations
nout = 1000 # error checking frequency
Vdmp = 4.0 # damping paramter for the momentum equations
Vsc = 1.0 # relaxation paramter for the momentum equations pseudo-timesteps limiters
Ptsc = 1.0/4.0 # relaxation paramter for the pressure equation pseudo-timestep limiter
ε = 1e-6 # nonlinear absolute tolerence
nx, ny, nz = 127, 127, 127 # numerical grid resolution; should be a mulitple of 32-1 for optimal GPU perf
# Derived numerics
me, dims, nprocs, coords, comm = init_global_grid(nx, ny, nz) # MPI initialisation
select_device() # select one GPU per MPI local rank (if >1 GPU per node)
dx, dy, dz = lx/(nx_g()-1), ly/(ny_g()-1), lz/(nz_g()-1) # cell sizes
min_dxyz2 = min(dx,dy,dz)^2
max_nxyz = max(nx_g(),ny_g(),nz_g())
dampX = 1.0-Vdmp/nx_g() # damping term for the x-momentum equation
dampY = 1.0-Vdmp/ny_g() # damping term for the y-momentum equation
dampZ = 1.0-Vdmp/nz_g() # damping term for the z-momentum equation
# Array allocations
Pt = @zeros(nx ,ny ,nz )
dτPt = @zeros(nx ,ny ,nz )
∇V = @zeros(nx ,ny ,nz )
Vx = @zeros(nx+1,ny ,nz )
Vy = @zeros(nx ,ny+1,nz )
Vz = @zeros(nx ,ny ,nz+1)
τxx = @zeros(nx ,ny-2,nz-2)
τyy = @zeros(nx-2,ny ,nz-2)
τzz = @zeros(nx-2,ny-2,nz )
τxy = @zeros(nx-1,ny-1,nz-2)
τxz = @zeros(nx-1,ny-2,nz-1)
τyz = @zeros(nx-2,ny-1,nz-1)
Rx = @zeros(nx-1,ny-2,nz-2)
Ry = @zeros(nx-2,ny-1,nz-2)
Rz = @zeros(nx-2,ny-2,nz-1)
dVxdτ = @zeros(nx-1,ny-2,nz-2)
dVydτ = @zeros(nx-2,ny-1,nz-2)
dVzdτ = @zeros(nx-2,ny-2,nz-1)
dτVx = @zeros(nx-1,ny-2,nz-2)
dτVy = @zeros(nx-2,ny-1,nz-2)
dτVz = @zeros(nx-2,ny-2,nz-1)
# Initial conditions
Radc = zeros(nx ,ny ,nz )
Rog = zeros(nx ,ny ,nz )
Mus = μs0*ones(nx,ny,nz)
Radc .= [(x_g(ix,dx,Radc)-0.5*lx)^2 + (y_g(iy,dy,Radc)-0.5*ly)^2 + (z_g(iz,dz,Radc)-0.5*lz)^2 for ix=1:size(Radc,1), iy=1:size(Radc,2), iz=1:size(Radc,3)]
Mus[Radc.<1.0] .= μsi
Rog[Radc.<1.0] .= ρgi
Mus = Data.Array(Mus)
Rog = Data.Array(Rog)
# Preparation of visualisation
ENV["GKSwstype"]="nul"
if (me==0)
if isdir("viz3D_out")==false mkdir("viz3D_out") end; loadpath = "./viz3D_out/"; anim = Animation(loadpath,String[])
println("Animation directory: $(anim.dir)")
end
nx_v, ny_v, nz_v = (nx-2)*dims[1], (ny-2)*dims[2], (nz-2)*dims[3]
if (nx_v*ny_v*nz_v*sizeof(Data.Number) > 0.8*Sys.free_memory()) error("Not enough memory for visualization.") end
Pt_v = zeros(nx_v, ny_v, nz_v) # global array for visu
Vz_v = zeros(nx_v, ny_v, nz_v)
Rz_v = zeros(nx_v, ny_v, nz_v)
Pt_inn = zeros(nx-2, ny-2, nz-2) # no halo local array for visu
Vz_inn = zeros(nx-2, ny-2, nz-2)
Rz_inn = zeros(nx-2, ny-2, nz-2)
y_sl2, y_sl = Int(ceil((ny_g()-2)/2)), Int(ceil(ny_g()/2))
Xi_g, Zi_g = dx:dx:(lx-dx), dz:dz:(lz-dz) # inner points only
# Time loop
@parallel compute_timesteps!(dτVx, dτVy, dτVz, dτPt, Mus, Vsc, Ptsc, min_dxyz2, max_nxyz)
err=2*ε; iter=1; niter=0; err_evo1=[]; err_evo2=[]
while err > ε && iter <= iterMax
if (iter==11) tic() end
@parallel compute_P!(∇V, Pt, Vx, Vy, Vz, dτPt, dx, dy, dz)
@parallel compute_τ!(∇V, τxx, τyy, τzz, τxy, τxz, τyz, Vx, Vy, Vz, Mus, dx, dy, dz)
@parallel compute_dV!(Rx, Ry, Rz, dVxdτ, dVydτ, dVzdτ, Pt, Rog, τxx, τyy, τzz, τxy, τxz, τyz, dampX, dampY, dampZ, dx, dy, dz)
@hide_communication (16, 8, 2) begin # communication/computation overlap
@parallel compute_V!(Vx, Vy, Vz, dVxdτ, dVydτ, dVzdτ, dτVx, dτVy, dτVz)
@parallel (1:size(Vy,2), 1:size(Vy,3)) bc_x!(Vy)
@parallel (1:size(Vz,2), 1:size(Vz,3)) bc_x!(Vz)
@parallel (1:size(Vx,1), 1:size(Vx,3)) bc_y!(Vx)
@parallel (1:size(Vz,1), 1:size(Vz,3)) bc_y!(Vz)
@parallel (1:size(Vx,1), 1:size(Vx,2)) bc_z!(Vx)
@parallel (1:size(Vy,1), 1:size(Vy,2)) bc_z!(Vy)
update_halo!(Vx, Vy, Vz)
end
if mod(iter,nout)==0
global mean_Rx, mean_Ry, mean_Rz, mean_∇V
mean_Rx = mean_g(abs.(Rx)); mean_Ry = mean_g(abs.(Ry)); mean_Rz = mean_g(abs.(Rz)); mean_∇V = mean_g(abs.(∇V))
err = maximum([mean_Rx, mean_Ry, mean_Rz, mean_∇V])
push!(err_evo1,maximum([mean_Rx, mean_Ry, mean_Rz, mean_∇V])); push!(err_evo2,iter)
if (me==0) @printf("Total steps = %d, err = %1.3e [mean_Rx=%1.3e, mean_Ry=%1.3e, mean_Rz=%1.3e, mean_∇V=%1.3e] \n", iter, err, mean_Rx, mean_Ry, mean_Rz, mean_∇V) end
end
iter+=1; niter+=1
end
# Performance
wtime = toc()
A_eff = (4*2)/1e9*nx*ny*nz*sizeof(Data.Number) # Effective main memory access per iteration [GB] (Lower bound of required memory access: Te has to be read and written: 2 whole-array memaccess; Ci has to be read: : 1 whole-array memaccess)
wtime_it = wtime/(niter-10) # Execution time per iteration [s]
T_eff = A_eff/wtime_it # Effective memory throughput [GB/s]
if (me==0) @printf("Total steps = %d, err = %1.3e, time = %1.3e sec (@ T_eff = %1.2f GB/s) \n", niter, err, wtime, round(T_eff, sigdigits=2)) end
# Visualisation
Pt_inn .= Array(inn(Pt)); gather!(Pt_inn, Pt_v)
Vz_inn .= Array(av_zi(Vz)); gather!(Vz_inn, Vz_v)
Rz_inn .= Array(av_za(Rz)); gather!(Rz_inn, Rz_v)
if (me==0)
p1 = heatmap(Xi_g, Zi_g, Pt_v[:,y_sl,:]', aspect_ratio=1, xlims=(Xi_g[1],Xi_g[end]), zlims=(Zi_g[1],Zi_g[end]), c=:inferno, title="Pressure")
p2 = heatmap(Xi_g, Zi_g, Vz_v[:,y_sl,:]', aspect_ratio=1, xlims=(Xi_g[1],Xi_g[end]), zlims=(Zi_g[1],Zi_g[end]), c=:inferno, title="Vz")
p4 = heatmap(Xi_g, Zi_g, log10.(abs.(Rz_v[:,y_sl2,:]')), aspect_ratio=1, xlims=(Xi_g[1],Xi_g[end]), zlims=(Zi_g[1],Zi_g[end]), c=:inferno, title="log10(Rz)")
p5 = plot(err_evo2,err_evo1, legend=false, xlabel="# iterations", ylabel="log10(error)", linewidth=2, markershape=:circle, markersize=3, labels="max(error)", yaxis=:log10)
# display(plot(p1, p2, p4, p5))
plot(p1, p2, p4, p5); frame(anim)
gif(anim, "Stokes3D.gif", fps = 15)
end
finalize_global_grid()
return
end
Stokes3D()