diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 0000000..9cc416c --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,32 @@ +repos: + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v5.0.0 + hooks: + - id: check-toml + - id: check-yaml + - id: end-of-file-fixer + types: [python] + - id: trailing-whitespace + - id: requirements-txt-fixer + - id: check-added-large-files + args: ["--maxkb=500"] + + - repo: https://github.com/psf/black + rev: 24.10.0 + hooks: + - id: black-jupyter + + - repo: https://github.com/codespell-project/codespell + rev: v2.3.0 + hooks: + - id: codespell + args: + [ + "--ignore-words-list=aci,acount,acounts,fallow,ges,hart,hist,nd,ned,ois,wqs,watermask,tre,mape", + "--skip=*.csv,*.geojson,*.json,*.yml*.js,*.html,*cff,*.pdf", + ] + + - repo: https://github.com/kynan/nbstripout + rev: 0.8.1 + hooks: + - id: nbstripout diff --git a/01-paper.md b/01-paper.md index 73eb22b..95cadc6 100644 --- a/01-paper.md +++ b/01-paper.md @@ -51,7 +51,7 @@ MyST is focused on scientific writing, and ensuring that citations are first cla ![](./images/citations.png) **Figure 1**: Citations are rendered with a popup directly inline. -MyST aims to show as much information in context as possible, for example, Figure 2 shows a reading experience for a referenced equation: you can immediately **click on the reference**, see the equation, all without loosing any context -- ultimately saving you time. Head _et al._ (2021) found that these ideas both improved the overall reading experience of articles as well as allowed researchers to answer questions about an article **26% faster** when compared to a traditional PDF! +MyST aims to show as much information in context as possible, for example, Figure 2 shows a reading experience for a referenced equation: you can immediately **click on the reference**, see the equation, all without losing any context -- ultimately saving you time. Head _et al._ (2021) found that these ideas both improved the overall reading experience of articles as well as allowed researchers to answer questions about an article **26% faster** when compared to a traditional PDF! ![](./images/equations.gif) **Figure 2**: In context cross-references improve the reading experience. diff --git a/02-notebook.ipynb b/02-notebook.ipynb index aca3cec..de80a2a 100644 --- a/02-notebook.ipynb +++ b/02-notebook.ipynb @@ -25,7 +25,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -33,19 +33,25 @@ "from vega_datasets import data\n", "\n", "source = data.cars()\n", - "brush = alt.selection_interval(encodings=['x'])\n", - "points = alt.Chart(source).mark_point().encode(\n", - " x='Horsepower:Q',\n", - " y='Miles_per_Gallon:Q',\n", - " size='Acceleration',\n", - " color=alt.condition(brush, 'Origin:N', alt.value('lightgray'))\n", - ").add_selection(brush)\n", + "brush = alt.selection_interval(encodings=[\"x\"])\n", + "points = (\n", + " alt.Chart(source)\n", + " .mark_point()\n", + " .encode(\n", + " x=\"Horsepower:Q\",\n", + " y=\"Miles_per_Gallon:Q\",\n", + " size=\"Acceleration\",\n", + " color=alt.condition(brush, \"Origin:N\", alt.value(\"lightgray\")),\n", + " )\n", + " .add_selection(brush)\n", + ")\n", "\n", - "bars = alt.Chart(source).mark_bar().encode(\n", - " y='Origin:N',\n", - " color='Origin:N',\n", - " x='count(Origin):Q'\n", - ").transform_filter(brush)" + "bars = (\n", + " alt.Chart(source)\n", + " .mark_bar()\n", + " .encode(y=\"Origin:N\", color=\"Origin:N\", x=\"count(Origin):Q\")\n", + " .transform_filter(brush)\n", + ")" ] }, { @@ -57,80 +63,17 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
\n", - "" - ], - "text/plain": [ - "alt.VConcatChart(...)" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "#| label: horsepower\n", + "# | label: horsepower\n", "points & bars" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -145,7 +88,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -159,11 +102,11 @@ "# Generate sinusoidal signals\n", "num_signal = int(round(SNR * num_series))\n", "phi = (np.pi / 8) * np.random.randn(num_signal, 1) # small random offset\n", - "Y[-num_signal:] = (\n", - " np.sqrt(np.arange(num_points))[None, :] # random walk RMS scaling factor\n", - " * (np.sin(x[None, :] - phi)\n", - " + 0.05 * np.random.randn(num_signal, num_points)) # small random noise\n", - ")\n", + "Y[-num_signal:] = np.sqrt(np.arange(num_points))[\n", + " None, :\n", + "] * ( # random walk RMS scaling factor\n", + " np.sin(x[None, :] - phi) + 0.05 * np.random.randn(num_signal, num_points)\n", + ") # small random noise\n", "\n", "\n", "# Now we will convert the multiple time series into a histogram. Not only will\n", @@ -188,30 +131,18 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdgAAAEICAYAAAD85+W2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAAsTAAALEwEAmpwYAAC/mklEQVR4nOz9e7xm6VnXCX/vex2f4z7vquqq6kPS6U44BCMQBHSIk4zEKMLE06D44oEExXgaB4WMM6LviLyDojiKGoQXxdERB1RAnGiQg4KSBJDGkKTTSXdXV3dV7drH57iO9z1/XPe6n2fvrurela7qqu5ev89nf/bez7MO97rXep61ftf1u36XstbSokWLFi1atLi90Hd7AC1atGjRosWrEe0NtkWLFi1atLgDaG+wLVq0aNGixR1Ae4Nt0aJFixYt7gDaG2yLFi1atGhxB9DeYFu0aNGiRYs7gPYG2+LUUEpZpdTDN3nvp5VS33CT9+5XSk2UUsGdHeGrB0qptymlLr/A+zc9Fy83lFIPuvGEd3ssN8KLzWWLFncK7Q32NQqlVKKU+j6l1NNKqbFS6peVUr/1TuzLWnvJWtu31tYvMqY/qJT6j3diDC1atGjxcqO9wb52EQLPAF8BrAD/C/BDSqkH7+ag7hSUoL3e7zHcq6y3RYvbgfYL5zUKa+3UWvtt1tqnrLXGWvvjwJPAFzbLKKW+WSl1RSn1nFLqD59isw8opX7OMeJ/q5TadNs5FkJ0TPUzbrknlVK/Xyn1JuDvAV/qwsmHbtkVpdQ/Ukpdd2z7LzQ3SqVUoJT660qpXbed953Yz08rpf6KUurngBnwOqXUH1JKfdzt+zNKqW9cOt63KaUuK6X+nFJqxx371yil3qWUelwpta+Uev/NDl4p9dtcJGCklHpGKfVtS+81c/D1SqlLbsz/89L7HaXUDyilDpRSvwZ88Snmu1n3s56jG2zrolLqR9y29pRSf9u9rt12n3Zz84+UUis32cZ9SqkfdfP1hFLqPUvvfZtS6v9WSv1jpdQI+IM3WP9dSqlfc+foWaXU/7T03lcrpf6Lm+NPK6Xe6V6/6Xm9yfh+2B3jk0qpP3m6mW7R4hZhrW1/2h+AM0AGvNH9/07gGvB5QA/4J4AFHr7J+j8NfBp4BOi4/7/DvfegWzd02xoBj7r3zgGf6/7+g8B/PLHdfwT8K2DgtvM48Efce38U+DXgArAGfKjZz9KYLgGf6/YdAb8NeD2gEPY+A369W/5tQAX8r27Z9wDX3bEP3HYy4HU3mYO3AZ+PPLi+2c3f15yYg+918/MFQA68yb3/HcB/ANaBi8B/BS6/wPny5+KlzNGJbQbArwB/w52nFPiN7r0/DDwBvA7oAz8C/ODJ8+v+/xnge9z6v87N4dvde98GlMDXuHnq3GAcV4Df5P5eWzo/bwWOgP/OrXuexfX6Yuf1svtbA7/oznHsjuczwFfe7c9g+/Pq+7nrA2h/7v6Pu5l8CPj7S699P+4G6f5/hBe/wf6Fpf+/Cfh/3N/+C9h9cR8Cv/PklysnbrDuCz8HPmfptW8Eftr9/e+Bb1x67x08/wb7l1/k2P8l8Kfc328D5kDg/h+47X3J0vK/iLtpnmJe/ybwN07MwYWl9z8M/A/u788A71x6772c4gb7UufoxDa/FLkZ3ui9nwS+aen/R5EbZXji/F4EamCwtOxfBX7A/f1twM++yLxdcscwPPH632/m8xRzf/K8NjfYLwEunVj2W4H//8v1eWt/Xjs/bYj4NQ4XSvxBoADet/TWfUiOtsHTp9jc1aW/ZwjTOQZr7RT4vQizuqKU+tdKqTfeZHubCMtY3vfTCHO50RiX/77ha0qp36qU+s8ufHkIvMvtp8GeXYix5u73taX35zc6LrftL1FK/ZQLPR65Y9w8sdjN5uizmW+4PXPU4CLwtLW2usF7991gHyES+Ti53L61dnyT8bzYGEAevt4FPK2U+hml1Jcuje/TN1rhFOe1wQPAfUqpw+YHeP8NjqNFi5eM9gb7GoZSSgHfh3y5/E5rbbn09hXkC63B/bdrv9baD1pr/zskPPwJJGwKwoKWsYuwpAdOjOPZpTFeWHpvebx+d80fSqkE+GHgrwFnrLWrwE8gYcXbgX8C/Chw0Vq7guSUT7vtz3a+b8ccNXgGuP8m+dnnbrCPiuMPH81y60qpwU3GA88/z8dgrf2ItfargW2Eif7Q0vhef3L5WzyvzwBPWmtXl34G1tp3vdCYWrT4bNDeYF/b+LvAm4CvstbOT7z3Q8AfVEp9jlKqC/zF27FDpdQZpdTvUEr1kNDmBAkpgnxZX1BKxQCOSf4Q8FeUUgOl1APA/wj846Ux/iml1Hml1Crw519k9zGQIGHQSklZ0m+5HcflMEDYW6aUeivw+25h3R8CvlUptaaUugD8idOsdJvn6MPIDfk7lFI9pVSqlPpy994/Bf6MUuohpVQf+Hbgn51ku9baZ4CfB/6qW//NwB8B/s/THI9SKlYieltxD3wjFtfH9wF/SCn1die6Ou+iH7dyXj8MjJRSf94JywKl1OcppU4tKmvR4rRob7CvUbgv4m9ERChXlSh3J0qp3w9grf03SA7x3yPiln9/m3atgT+LMJ19RJDyTe69fw98zI1n1732J4ApkqP8jwhL/H733vcC/xZ4DPhlhLVULL6Qj8GFLf8kctM5QG6AP3qbjgt3HH9ZKTVGRDQ/9CLLL+MvIaHUJ5Fj+sFbWPe2zJG7WX8Vktu9BFxGwvm47f0g8LNujBk3fwj4WiQv+xzwL4C/aK39d7dwPH8AeMqpjP8o8HVufB8G/hAiwjpCxFQP3Mp5XTrGX+eOYxf4B0ipWosWtxXK2rbheotXBxxz+XvW2gdedOHXKNo5atHi5UPLYFu8YuFCfO9SSoVKqfNIGPtf3O1x3Uto56hFi7uHlsG2eMXC5YZ/Bngjou7910hpxuiuDuweQjtHLVrcPbQ32BYtWrRo0eIOoA0Rt2jRokWLFncA95TRtlI9q9Xa3R5GixYtWrR4EQxtDMBIFc97bRnL7y/jN79jn729F2yw5fFffqn4oLX2nZ/FMO8q7qkbrFZr9JL3vfiCLVq0aNHiruI3F+Jf8qH48vNeW8by+8vY2/s2fvrnTuenstp54kauXPc87qkbbIsWLVq0eI3AgjK3y0Tt3sRLvsEqpVKk+Dxx2/u/rbV/USm1DvwzpOD8KeD3WGsPXur+WrRo0aLF3cM7igt8KL7smek7lljrzdjqO27AdgGwr+4b7O0QOeXAf2ut/QLEHeWdSqnfAHwL8JPW2jcgnTi+5Tbsq0WLFi1avAqgEAZ7mp9XKl4yg7VS5zNx/0buxwJfjbSJAviHSOuwF/OKbdGiRYsW9yBuxkJvxlpvtkyznacsqBv1bXoV4baU6TjD7P8C7AD/zlr7C0hXiysA7vf2TdZ9r1Lqo0qpj0onsxYtWrRo8aqHBXXKn1cqbovIyRlo/zrXreNfKKU+7xbW/QDwAYBAX3gFT2WLFi1avHrwjhOK4NMw1dOg2c7DgDK3ZZP3LG6r0YS19hAJBb8TuKaUOgfgfu/czn21aNGiRYtXOIw93c8rFLdDRbwFlNbaQ6VUB3gH8P9D2kV9PfAd7ve/eqn7atGiRYsWtx83Yqu3i7HeFK/w8O9pcDtCxOeAf6iUChBG/EPW2h9XSv0n4IeUUn8E6S35u2/Dvlq0aNGixasFr/IQ8e1QET8GvOUGr+8Bb3+p22/RokWL242TjA1uX47xbqGpT72V5Ru8XMe+vM+nLajq1U1hWyenFi1atGhxV9CGiFu0aNHiFY7TKGLvBqN7oTE0uJFj0o2wvNyt1qa+FLzYuG62zzdAGyJu0aJFixYtbjtsW6bTokWLFi1a3BlYe7qf2wyl1Ncopb5XKfWvlFK/5bbvwKFlsC1atHjV4WS497O18/tsw6inDdOeZpwnzfVfDB+KL9+y4OlW8ULh9NOGuZ++zVaJSqnvB347sGOt/byl198JfDcQAP/AWvsd1tp/CfxLpdQa8NeAf3v7RrJAy2BbtGjRosVdwW22SvwBxORosX0pH/07wG8FPgf4WqXU5ywt8hfc+3cELYNt0aLFTXGnhD93YrvLrPOlbvMk47rV8pdbFSaddpmbMdMb7ec9+UNsxc9Pcn64rF90vzc7Pzebjxea+3cUF/xYvj1+2r9+iyKnTaXUR5f+/4Cz2fWw1v6sUurBE+u9FXjCWvsZAKXU/wV8tVLq44gJ0r+x1v7SqUdxi2hvsC1atGjR4uWH5VZusLvW2i/6LPZyHnhm6f/LwJcAfwJxHVxRSj1srf17n8W2XxTtDbZFi9cwbpYvu1ne76WYGSxv/06w4TuRc2zmomFgL8T+bjRnt5KHPQ2rbMZzo3GeGvGNz+PNWOh39s/R6xZcvtbnwzz/+N9vH7jh6y/Edj8UX5Z+sHe+4fqNdmCttX8L+Ft3euftDbZFixYtWtwd3PkyncvAxaX/LwDP3fG9Oih7ByTQny0CfcH2kvfd7WG0aPGqx0tVmb7Y+rfKKk8znpfb3vBGx/CO4gJvjQL//4fL+rMeywuxyBvhThzrC52n99sHAPh29fSx5d8aBVwvNE+qkodsxPcmTwIcY/kvNt53FBe49Og38Av/+P5TjTP8wk/94mlCxC4H++ONilgpFQKPI7a9zwIfAX6ftfZjp9rxS0SrIm7RokWLFncFyqhT/SC50g8opb7qpttS6p8C/wl4VCl1WSn1R6y1FfA+4IPAx5FmNC/LzRVaBtuiRYvbjM+WHd+IvT1kI7Zi4xnTjXC7md3Ncp2nVe++0Dq3o772hcZzO3Az5rqM5rx8u3r6eef7tOf/kQe/jQ//owdONabgrY+fisHea2hzsC1atGjR4u7A3HGR011Fe4Nt0eI1htPkTz+bfCK8NIXwjWpHm/weyYvve3kbny2W2etp2Oet5o1vJ3N9Mfbc5EqbWtiTudHl9ZcjBd/ezPnSvm80J+8oLvD+SBTEJ8fynvyhYxGH5fXebx9gbVDwvdCa/bdo0aJFixa3Hdb9vIrRipxatGjRosVdgIJan+7nFCKnexGtyKlFixbPC3/eSo/Ph2zEk6q8LcKm2yHcOW3I+OS+3xoFfLis/e9bWfc0+7vRuk1o9oXQCLxO2+/1ZkKq9+QP8ZaLIwC6nZzHn9rgzW+UktAsS5jNJQ5/+Vrfr7M2KDgYx8dCzdcL4WVNCPhm4q/mugCZ2wtnJgBMZzEA37v+R/nIBx56wWNvoN/28Vbk1KJFixYtWpwar3KRU8tgW7S4i7gVpriM2yHmuZ3ba7Z5K+Uad8LisGFOjWAHOMa8lhlVI/r5yvXaWwGuDQq+eXLlJe3/JBqB0LJBQ4OvXK95fC+9YQnSjUqFlsd9kiE+8uAegGei01ns2WeDJ1XJuy/Mmc5iLp7f5bFP3Offa7b77gtz1tdG7B8MPZttmOyFMxPOnZH9XLm2weVrfS6cmTCdxfS6hf/dzGWvW/jtnzuzRxSX7O6uMZsn/M30T/KRv/u6U82rfvuvtQy2RYsWLVq0OBUsLYN9OdEy2BavdtzukpJb2c5y6cSdthh8sRZnt7sh+HLO70b7btDYHC6ztV9+ZnhsXt6TL/KCjR0gLJUM3QDLreE+XNbHcqsXzkw8IwTJfzb4x59aPcZEl8e+fL6W2e9bo4A3v/E5nnl2k163YH1txGOfuO+YMcTyNh7ZyNjaGDObJ/zI5Q4fii+LQb+bg2ZOmnxsw1yXc6bLLLsZ4/vtA1w4M/Fs9WAc+9/LaLbzTTt7x15/5OJf4iP/x8M3ndNl6Hf+1yeAnwJ+zFr7Y6da6R5Ay2BbtGjRosVdgILTd9M5sta+906O5k6gZbAtWtxGnNag4Hbv84W237C7F2JgLwdeaJw3UjGfzEHeSN3b5DaXX79ZXrthom+5OPIs8g8+PbnhWBpW2eRIm/WavCZIXnJrYwzA9b3BsdcBz+ge30v93DfbXkbDSr9dPe1tCk/mahtm/b3Jk35uls313xoFx3KeTe70pAL5/fYBrhfab6fZ9gtdtw0bb+b4pPHEzdZdfm+ZMTe49Lr38uHvfsMNz9VJBL/tsTYH26JFixYtWpwad74f7F3FS2awSqmLwD8CziLGVx+w1n63Umod+GfAg8BTwO+x1h680LZaBtvilYrlp/g7odC9lXGcRJO/e7kZ7M3m4WSNZDNGwCtSG8UqwPqa1G7uHwzpdnKvkgVhak3u8WS7tGU0219mbw/ZiEc2Mnrdgl9+ZuhzpsvbA3hkI/Nq3Gb5hgH/3ONbz6tjXRsUXDy/y/7BkOksZmtjTJrmZJmM+/rewOc0lxXPj2xkAF6F29SeXjgz8XniZt6Wz+mNIgMNE14e041ypM22lxn2yW01rzcsuRn7MkNdzls389Uw+eXjWd7Ppde9lw9/1yPPO1c3QvA7fuUVyWBvh5NTBfxZa+2bgN8A/HGl1OcA3wL8pLX2DcBPuv9btGjRokULZ5WoTvfzCsVtz8Eqpf4V8Lfdz9ustVeUUueAn7bWPvpC67YMtsWNcDuagy/jdqtXb7dx/gtt62Y4ma9cVrE2jOxO54JPjnE5b9i89+4Lcy5f6x9jmcum9Ccdg5YZ6XIOdX1tRJYlPP7Uht/OMkNq2GzDgpucZMOQH99LjzHPZrllnDuzx9Goz/W9gWetTa61qS19y8WRV9ECXtW7fzBkfW1Evz/j0jNn/Xgb9roVm+e5JD3y4B4rwwl5EZHEwu6PRn1+7vEtv5/lOVl2R2pqTFc3Dnnsv7zx2PF2OzlpmpPEJU88ec4fS5rmfpyAn89m28u4WWP599sHeOTBPR9VaByiGiX18rna3JQA5sc/eT8f3A+49NA38uHvfOPz5v1GCN79S69ZBuvhusm/BfgF4Iy19gqA+719k3Xeq5T6qFLqo9ZOb+dwWrRo0aLFvYqmDvY0P69QL+LbJnJSSvWBHwb+tLV2pNTpaL219gPAB0AY7O0aT4sWLVq0uMdx+m/8126ZjlIqAn4c+KC19rvca5+kDRG3eAk4WUZw8u/m/xut14RIb1R83yxzO3tzvtD2X0po9mb7OiligZuH8W5lu7c6ppOh6OXyjKZ8prEibAwRgGOWe00YtAmbNqUmyyUxDRpjg+UQ5Lkze+RF5I0clo0RlseyXD7ToNnfyfIbgG+eXOE9+UN8+SPXj4VAm9BqI4xqtrEcUv7gfsDXveGQ2Tzh0UefYj5Ljx1H5ELAB/sr9PszAMoi4oknzx0TCG1tjFkZTjga9ZnNEz9neRHx2Cfu45EH90hTEVw14ehmf7u7azz+1IYXJgE+bD6dxd4SsjGMaMLMUVxysL/CY5+473niuHcUF/jK9ZqHH7rC0ah/LKTcnJtmTElc+mWWQ+pNCP1vhn+aX/irn3OaS47w9370tRkiVkJVvw/4eHNzdfhR4Ovd318P/KuXuq8WLVq0aPEqQityepENKPUbgf8A/CqL/vTvR/KwPwTcD1wCfre1dv+FttUy2BbwwoxvuWB9mc2eNFI/LXu8lbZjp2WiL8SOT8ucb2Yv2IhPbsTMl+fixXBy/Rc6tkao1JRiLJeXLNvpNcxzWTTTYLm0phELLZvq/8ADfb/Mj1zuHNt/U5rSmGUsGyA0ZhBNKUwSl+RF5NuvNaxsMun6MTWMb5nxNoYRjWiqEQfN5gm//MzQl9BcPL8r7z/wHHFasPPsNpNJl2ee3eSD+wHvvjD3LPeZZze9of5ySU1zrb7l4oj7L15lMun6cQPH/l62V9zcPGAy6fp5ffjRJ4nTgmefPM8TT57jg/ty3pvz34iPlgVP8HzB1wf3gxuW5TTHsjKcEMUlZRFxNOr7eVoWhv3yMzLORoy1HGloxG7NZ/Pr3nDIxfuv8Mee+Jv8wl/5PE6D8Pd9+BXJYF9yDtZa+x+Bmz1ivP2lbr9FixYtWrwaoZpm6q9atFaJLV52LOdIl7HMTG+23mltCF+spOVWxngje74m/3ey5OS0+cxlFnbSvGDZdu8klstYbmSocBI3Y+Lf8PnXfI7sZvt78xufY2t7n9HhAJC8X8PUHrIRX/7I9WNlJVvnrjMd9wD49KcvelYDx1vGnSylaV5vcqbN68tt1ppc55sevQTg2dTm5gEf/+T9x8b/yIN7nLtvB4DZpMtHHrux/eBJA46mIXlTVvJzj28BC2vFhs02uf1mHtfWjwhDORejw4EvhYEFG2+ul+W8bcM4l20sl80tGpxsZ/eV6zVv/vxPc7C/wk8+dsFfP8tG/ifLjhpDjuUoxzJLb5qgN6YQcLxFXZNb3dw8oHTsuokMNLlgOG68sVwi1JQDJS7H2+lm/NFPfTe/8Jc/n9Mg+v/859cmg23RokWLFi0+K7yC86unQctgW9x23Iw9LudJb8asXqoJwrKZ+Y3Gctrc7PvtA8ds5U4aISy3DlvGSVZ5M8u5F2oF9kIt1m7WBu4k415+vVHzNvs9uc9lu76GwTV5wGee3eRgHPPmNz53zDwBOKZSbRjUshnE/RevUhbRMebb5EtXhnL8Ta6xURc36tnH91K+/JHrXN8T9nzx/K4fS3MsTcu2phXbMhtbtgVcZmon2dm3q6f5zv65Y0riD5c1X/eGQ87dt0NZRHz8k/d7lfByPrdp63Yyn93kG0+e+0aR3KCxT3z8qQ3e/MbnfG61Ud2ePD8AX/xm2ddHHnvg2DyAqIg3z+5x5dJZH1UYrkpuuaoCDvZXSOKSbn/Glee2/f6b3DXgc63LauIsSzh33w5pNyObpczc8R+N+qwMJ6xv77O/s+732azbbCftChsPgprDvVUfffgr+bfwC3/xCzgNoj/08227uhYtWrRo0eJUsGDbdnUvH1oG+8rCCylwb/TereYnb3W9ZVu+Jpd1sobvJONcrrtczhc1+axmW8sG5k3u7GRrteWxL///7gtzAJ/nWm5ftjy2k3npG6mlT87HMiNeHvPJtmhNvrjZ7jLTPHdmj61z18nnKWG8yPXt76wDMFwdH8vDrq0fceW57WO2gcsG+jdqNN7Uqj72ift8XWajQl62PWxawDW53XMXrjE+HDCZdI8x6Mmkyz/41TPHTPyXIwsn618ffuiKVxenae6Vve/6oiePKXYb1WyTRz13Zo/17X2uXD7jGWajQgZhjU1O8sq1DX8dnTT0X2bjy2y5Od5G8ZwXkY8QNOriZt6bfHizn0aB3LD4RmW8tb3PYG1EkcXkc6l/Xd06JEwK5qMeu1c3GKyOGbtzOlgdEwQ1dR3wsV99w7F62O0LO0RJyWzUZefZbXZ319jcPGCwOqbTm5P0Mqo8JulmTA4GdIZT8mnKfCq55yCouX5li66bp8HqmI/96huYzmI+0Hsf//kvvIXTIH7Pf2hzsC1atGjRosVpcQsM9hWJ9gbbokWLFi1eflgWzgmvUrQh4tcoPlurvBcri2lCjzcTMp1mPLeCZYHOsrCp2ff3bG8cK6V5IROGJry4LBZqyiuAF+3gsnwsy9Z8jU1ds50mFN2EHG9msLDcZeZGwqVGKLUckmxC2c3Y3/7my16w1O/P2N1dk3HvDXjTo5eI4pLZpMuVaxu8/vXPeFFLE7Icro6Zz1I63YyBM5CYTzv0V6ZMjnpcuXwGgK3tfeaz1ItbVjcOyecp13fWWVs/AqA3mNLpZ9SVlN+YOuBof8iV57Y5d98Oa1sHBKFh98oGYVhTVYEX1DQCmp/46KKM5eL5XR/ybfa/eXaP3asbrG4cEkY1VRlQ1wFXLp+h358xWB2zv7PurQp3d9e8tWFj6bh8rpt5ffubL/PMs5vAwmyisUt8y8URr3/9M8dKdda390nSgjyLGR8OvLCnOe/X9wbeHKM5L//4U6sAfhyPPvoUYVzS6c0xdcCVS2e5cm3jWKphuazo3H07fr6uXNvgcz//UwRBTZzKMQWhQQc1UVISRBXZpMNof+gFSv3+jO3zUt5UZDHTcc+nApqxrq0fsXluj/kkpa4DxocDVjcOqeuAjXN7TA4k7Lx7VT4jk0mXtfUjZpOun/OBE159w6/+Xf7Tt34hp0Hyx36mDRG3aNGiRYsWp4U1r+4QcctgX2O4USlMYxx/soTmtGKjF7MGPIll1nnS2vC0xwB4ltiwDjheUP+V6zUf3A88EwSOFey/EN59Ye7LVRobumVW3OxrbVBw8fwuP/nYhWNG5o1pRGN40AhhGga5Mpx44ceygAcW5R+NAKZBwyQa8/dGkNX0Cf1db/sYs0mX4eqYpJNR1wEf/oXP9cYQ7/qiJxmujhmsjYiSktH+kCefuN+PB/Bj6nQz5rPUC20a03bAC6qaEpHmeJuylqa8A4TZVlXgj7Nh7Rfvv8LocEC3PyMMaz75yQe9SOv/enQh9Pn5jz4M4IVKsCjtATzbhkUv0t//9f+Wy5+66Mewtn5EbzDlcG8VwDOuRjzVCJUaltzMbb8/O8bw7794ld3dNb+/ZcHVTz524Vi0oDkvX/zmp+n2Z75EphFaPfTwJbJZ6udlbf2ItJt5YdlJpvr2N1/2x1HXgWfHVRGRdDLitODg+po//1UV8OlPX/TCqWauGoHS/s46D77xKT+PZR5xcF2uzbSbEQQ103GPlfWRZ71pf87sqM/kSMxEgqAmjGrPVgE63Yykk7F2dh9rNJODATqoPXs2dUDiynb++w/+c37+z5+OlKbv+6mWwbZo0aJFixanhW2tEl8+tAz2zuLFWqg1ub3GJPxkTvAkPtv2azczS7jRsk1O95GNzLO5hkE0pQ6NQcIyo2ys7hoziC9+89PkRXTMWm4ZN8rTNhZxzd8gpuZNzrUxo9jaGB9jJCCMdbg65vrO+jFT+Tc9eomyiLhybeMYS20MEhrGvWx11zCZJvcHwsoe+9XX+zZwTQ4S4NIzZ/3cPPLgHl/w1v+KqQMOr6/SG07Js9iPtdPN6A2nPr/XsLKGiYKwkoYRNYYN62sj1taPOP/6Z5mNuowPhjxz6Zw/jovnd4+V5yybHowOB/zERx/id73tY4Rh7cfUMKLpqMf1nXWyLOHi/VcYrI0wdcDu1Y1jJghpN/NM7srlM35/Tzx5ji/9ssd8DrYxN1i2cgzDmtWtQ3RQMz3qsXF+l7oMmY26Pv/YnMfl/DMs8pNpN6MqIqpKrpfGHnK5McBPPnbhWIu4hx+64hltkz9uyp7SNOfchWsEQU0+T3nm0jlv1wjw5Y9c5+FHn6SuA4KgprcypcwjP/ebmwc+990bThfXz6jnc7kr24eUWczkYMDR/vBY3rs3mBKnBUFoSLoZcS9jui85VVMH7F7ZYPPcHmUecbQ/JAxr5rOUcw9c9TnZpnRnPupRlTIvcVowPhiSdDJ6K1NMHZD2Z3zNv/lhfu7PfsnzPvc3QudPf+gVyWBf3Y8PLVq0aNHinoS1p/8BVpRSH1BKfdVdHvYtoWWwr1Dcqpn9ciPsGzHIZr2TDbMb3Egtu9yC6kZM+EbNml+I9TamDE1OsTFFb3DS3q9htSvDCR957AHe/MbnvGKxySVeeubsMQu9xnJvuQE1LBqANzmyRtHZYJnVNirgxqzgRnndt0aBt9D7nu2NYwrk5ebTgM9fLjOixqKvyZ++/c2X2dre90YQjXqz0xe2VOaRZ4FNrnHz7B5JN+PZz5wnikvPsLZi483Zl5l3Yz7QKF6bPPGV57aZzRM+9/M/xXB9RNzJsUZT15pnHr/fjyNMnFo1MMxGXUwdMB316A2n6KD2OcKtc9fp9DOuPH3W2w6+4XM/w3ySPo85AoRxSVVEnH3oOcK4oipCrNHks5Qyl4jBYOMIazRlHrFzeZswrI/lmpvjAnweej7teJXts0/KHDUGCgDjgyFVFbCyPiLPYvZ31tk6d504LeitTji4uu7zlAB5JpGG4fqIMo+YTzskaeFzjw3Tbsw2tjbGnLtvh95A2ObJPOpgbcTquX20NuTTlGzS9VGIo/2hv85BFNqNarvJHTcs+eFHn6S3MiVKSj71K29gfXufzfPXGe+tMB3JfN/38GV6G2OKaUJdhlSFZA97G2OqLCKfLhrGV2VIGFVMD/teCd7MwdH+kJ/5+Tf53POFNzwDQH/riNn+gGzSIUpKDndW+YO/9L383J/5Dc/77NwI3T/7716RDLbNwbZo0aJFi7sA9ao3mmgZ7CsAt2I72OQtT9ahnib3+WJq4HdfmPvc3nJ+Ehb2e03+qbEDbMz3l2s5l4/hPflDvP3Nl33e7yc++tCx9m1Nvq/BSbu8xkR+uYn1cj713Rfmx5pBN9uE5zcJb3JiywbyzXLA81rKNbne5v9lY/nHn9rwpvHAsfxYGJeeaTZ1ow2TO3fhGrBgqIONEYc7az7H2Iz5i37DY5g68HmuRlmadDPiTo4ODLOjPvNJSj5Pj9WoNvnh3nDKdNSjqgLPnjcv7JBPU3qrE4p5wrOfOe9zkN3h7BhrbOpNAc88l1l42s3or0z9GDYv7BBGFcU8OaYmPdxZ5fqVLda396mKiN5wymBDamcbxqoDw84lqbnt9OZESYmpA7orE0ytObi67sexfWHnmEL6oYcveVbaHc7Yu7LBlctnSOKS9e19slnq1bLL+dfeYOpVso3St6nPLYuI7fM7BKHx+ceG3U8P+wShocwjOsOpP+a0P0cHRmpQx13iXkYxTclnKXWlKbLYq287q1PqMmA+6vo61r1nN8nnqbc9jNPCLReSjTrowBClBdm4S11r0p7Mr6ll26YKMHXgIwWb5/borkyI0gId1eTjDkFccXhlnYPra5RFxO7umjf0H66PfHRgdeuQtD/z+9RRzfywR9SRMdlaUxUhVR4Rd3OKWUKYlOjAkI87qMDwrh/+cf7jn/rSG37fnETvmz/YMtgWLVq0aNHiVLCtivhlRctgj+OltG9r6kCBYzWcN2taflJdvGza3pizNy5Hb7k44pt29jxbfmQj461f8jEyp2JtnHwArl8RFWTT2LvJKT6ykfGmRy+xunHoGQPgW1uBsLjB6viYOne5PrPJZTXm6c2xnnTCGR8OvGNPY7AOeKVro95tjvmRB/e8enMrNr4tWqPYbRpMP/7UhleHnlQlv/nXfYLV7UPvbPPUExd57BP3Hcvhbm3v88lPPuhZcdM27GjU5+L9V3zucXXrkMlRz7O7/tqYpz7+oGfEDTtNu5l3LGpM2Zs6zm5/xsr6iKoMyOepN+9vFLkNg9t5dpvt8zs+f5p0MsKo9u/t7q7xc49v8eWPXOehhy+xun1AEBiUNj4nB9BfGxOlhWdPcVpw6RMPkHYzhusjdFhjqoAokZzytafPEsYl/RXJR5Z55HOXVRkQpwWDjRE6MGTTlCqX8717ZcMz5WXlq6kDdFBT5hG91QnZpEuZR551d/oZOqjJZylJN/PjqGtNf2OMrRXGaKb7A0b7w2NOUKvbBwDk05TucEYQVejAMNkf8qmPvY5zF66RpAVbD12lyiKOdlbpDiVXms9S0v6M4bkDJjsrmFoLq40rwqSknCWEaUmVRQRRRZnFjPeGJL2MznDG4ZV1iizmvjc+gw4MR1fXSHuZXxaguz5GhwblnKWKcYeDy1tMjno+J9wdzjjcWWXj/C5BXFEXIabWZJMu3ZUJOjDCQMuQIBA2buqAlTP7qMASRBVVFqGjGms02ajDyvk9TBmSjTvUReiZ7cHlLepK+2tj+/XPka5N+W/+9n/kZ9/3G5//5XUDDL71J1oG26JFixYtWpwKVsGr3MmpvcG2aNGiRYu7gnsogHpH0IaI70HcLDT8Qj1Bb2ZvCBwznm96mTavw/G+o802GoOHrdh468EmtHswjvmKL/u4NzcP45L9nXVv0QZSdN8YICz3En3w4Wd8mHI+S/n4J+/3YdsmzNqUklw4M/F/N+8vGyE0ApUmBJp2M9/jsgkhXy+0F15tbYy5eP8Vru+s+1Ds5uYBl545C+BtDgE+9/M/dczKbmt7n6STkc9Tkk7mBUoAm+ek5KUJg0VJyZWnZZudbsYv/fIjfv+NnWBTCvPwo1LGtHZ2n2KeMD3qMdgYEUYVVRkyH/XQQc1gQ4RedRlyuLNKb2XK9KhHnBZe8LN7ZcObvTc9XIerY9bP7qHDmvGeHNtgY8R81POGE2k3I5ul3vQBpNxi85yU+ZR5xPSo580VNpzZQG99zJUnztPpzekOZ9S1pspjCSdf3vblJ81YBxsj0l7G0c4qO89u+7D/ufuvsnZuz4c4QUKpYVJgqsX1unN5m9mk68VQq1uHfnyj/aE3xW9eC0JDXWmeffI85+6/SpSUDLYOqYuQZDD3240Hc+osIuoWoC3lJOHwuQ1MFdBbH9NZnRIN5pgyZPzsOtk0JYwqkl7my1eSXkaYlihtyJyVYDZN6Qxn9LePmO0OqEsJwzZCpNWL17FGY2tNvDKjOOpSZjHFNPFh4TCqANCBQQeGtUefQ2nD/scvUBUhUUc+M0l/7sPmdRl4kVHUKXy4thE/VXlMmBSsnD3g4PKmL2NqxGzLArIgrrC1ZuWB61ij0HFFncVMrq7S3z5CxxIqDuKK8XPrjK+vMjnqEQS1L8V68E1PkQ5m5NOUpJeRjbsc7qzy9R/9Pn7mj/0mToOV/+XH2xBxixYtWrRocSq0IqeXFy2DvTluVGbTMNDG0OAkk72RcKlBw0QBz/K2NsbeYGF53T/+hZc5/9CzBKGInhp7uaY0ZPfqhmeBIMYJm5sH3ii+YZeNgXjDXD7+yfv9Og17ff3rn/H2bYfXZSxNu7RGsHTSoH1t/Yi1rQPPXnYubwOwsj5isHHEeG8FHQjbXhbxREnJfJKyun1IPkvZvbLB9gV578rTZ9k8u0dnOCWfpowPhsxnKYPVsS+HacwEGva+fnbPW9c1ZgCf/vRFHn30KW9ssL+zzvr2PoDfTtqfs/fsJnFakPQyqjz2Ld3GB0Nf1tPYzCXdjNp9MTUlNVGnYD7qkjomVbvynXIeexENyBfa9UvbrG4fEkQVUVpImcc0xVSBF7NUZXCs9Gbj3J4vKwERA33mv77e2x8+c+kcX/wVv+gZU2d1SjFLKOcx6VDYYjFN+PRjD/vow3B9RD5LPVvefOgK+aTDdH9Ab33MfNT1Yxq7yEJzDjq9OUUW0+lndFcmxL2cw+c2qCvtrf6itEAFhnQwpypCX/IT9zKm11cIogpjNOU89iYV3ZUpptYMzh5QTFNCN29lFlOXAd3NERhFMU05uLxF2p/5dXVYs3rfHjo0lPMY487BeHeFtQtixWhrRTbu+nZxwzOHKG04uLxFmIiBRZiWmFqTjzsUWUzayzC1pr99hKk0+aRDd3OEySPKLJbjqDVhXKGjiun1FaoiPMawqzKkvzEmTAqCWJYps9hf9020IYxqOsMpg61FmVQ0mDO9uupFX8Mzh3Q2xmQHPV+aY2tNujIVsVYvR4eGYpwSdgqqeewjBKbSmDJEBYa3feCn+en3vo3TYPUv/auWwbZo0aJFixanQ2s0cbqNKPX9wG8Hdqy1n+deWwf+GfAg8BTwe6y1By+0ndcigz3JLpvSmJOt45aXbQz5m/Zhjzy4d8zooDGkf08upg3LtoDLZviAN3JocpIPPXwJ4Jh9XpIWTEc95rPUt1vb3Dxgd3eNx5/a4Cu+7OPeqg3EzP0jj4kR/pseveRLa5ZbgnX7M7YvSCu3Jn/YG0yPMdzB6ti342oM26O4ZPPsHlUZ0Oln9NdHhGnJ/LDH5GBAVQZs3S/bzaYpn/mvr+f+Nzzji+I7q1OmewMp95h0MHVAXWnWz++SDOfM9hpzcykvqfKY/vqI1JWPNPm1MotR2lCVIaYKPKNvck8NuisTjnbWfMuuMo+oysDnWbNJl/kkZeP8LnEvR2mDNcJOba2IujnlLGF62OdwZ43V7QN6qxN0VFPlEXURsnPpDNksZfPcHnWl+bVfeZRz9+2wsj6ivzYmn6VMjnp0enOC0Bwbk6kDBhtHJL0MFVifvwtc7g/wNn1pf+at8wDiXk427hC6Epfdp874tmZ1Kc/uda3ZvbzN6tYh/fURvTOH2CrAVJrJ9RWiTsHgvn3qLGLvqTOEUUVndeqZUV2EPg+YDMSoYX7YY3bUI0rKY/nXle1DqiLk4Oq6z003to6xM11I3Nia3KWptM9dzg97XHv6LEknO5YvPri+Rm8wpbcyPVbW010fMz/s+Wug2VdTipMO59ha+TlMh3PiXobShnzcRWlDGFf+WmpMGC5/8n5vttHfOkIp0O58mDJEJyV1Fh0rxQEwzgDEWphcX+Hypy5y5bltHn70Se574zNSWpNLjjfu5fTP71FOhGWaMsS4qEmdRVijUdqglMxLmEqT9rifUc1j5oc9yiwm7mUEUS2/05Kwn2ErTe3y6eUkQSlIN8eoqKKex5g8oprH/Obv+yl+6o/85ud/Kd4Aa//bv3gC+Cngx6y1P3aqle4B3K4A+A8A7zzx2rcAP2mtfQPwk+7/Fi1atGjRQnKwpzf7P7LWvveVdHOF25iDVUo9CPz4EoP9JPA2a+0VpdQ54KettY++0DbuVQZ7Upn7leu1z182+HBZ31D52xji30jl+9Yo8BaDN7ISfMhGfPkj15nNE2/xt2zV9/BDV4ji0tuZAV7Zev51z/omymFYe+VsFJfelg8gccs3TabPXbjmDR6aov/JUc+rTKsqYDbpcjTqH1PEnmzqvHl2z6tpGyOD9QvXCaKaKC2Y7g28lV+Ty11ub9WYE3SHM29YMDvqEyYF89HCmKLJczaK5TMPXGU26nqT983z1z2raIwHmlxy2p95hmAtlLOE/vl9isMeKjDURUgxS7xxQdLNSAcz6lJUqGE3R2srT/7aUmcRyeqMKouoZglhWvic5fywhzXa5wUBn2PsrY+xtUYFxos+GuVq4HLTJg+ppgk6NMwP+swPZQ4a5hOlBeNdaTA+2Dwin6ZMD8XKsslVpv0ZYVwRRBUqkM99EFUcXV0jTgt0YDxTmR/2qMsQpQ1RpyDpzylniVfC6sBgak3cy5nsDegMZ8TdXFhpWnilbWd1ig4MdRkSRBX5uENndUrYy8Eoz4aUiy5Egzm21lijqaYJKpB8ZhhLnlFpQ2drLMxzHlPNEqZ7A58HjTu5bKdT+PWa+W8M7It5Qtdd20FUyXG6/Qy2j7AWlIJsLLnOJn+ttMVUAcWoIwzbGSk0bH98bc2fu8aoopimRGlB78whOjSYSvvrxBQhs90BKrByzRQhg+0juuf3sUahtKUcScvIIC0pRh2Ontn0+2hyvMlw7plsnUUka1OCToGKDGYWU+ch1SyhLkLCbk4QVwRJxezaCt0zR5gyEBvFShOmpVcz12VAOY/pbYwJuznp5pjisOeXAzBuTo1R/lz0NsYELncbrc7AKmaX1ymmKXUZEDhbxd/x4z/Cv//D/y2nwca3/0ibgz2BM9baKwDuJrt9o4WUUu8F3gugWL2Dw2nRokWLFvcOVKsiPvWGns9gD621q0vvH1hr115oG/cigz2pxm3Y63IrtqZGdCs2x17/nm3JkS6zzgZNvvTcmT1vwj5cHfum2U2+sWGSv/qLbzpmfdfUOQJeybl+do+4kxN1CnaePOtzgoA3jQf8a2EkvxvrNJCcWeyUpUobsknXM9jGyP36zrq3+bv/4lXJi57bO2Y9BxAlpTct19ow3l1hetTjcG/V29U1uaooLSizmGzUoXL5u85wRjmPySZdnwc9fG6DfJoSJSU6rAkCQ9zLGF9fRQe1Z60Nq8unKVGnIIhqz/aS1SnWaEwRUGWxN0vvbx1x+NwG6/dfR2lhmWFPzp0pQ8pJQhBX6NAw2x0QpiXp+gSUxeQRptJeeRp2ClQoNnJ1JrlSHRiSjbHUDk5Sgm5BkJbYSkNgqacxOq5Q2lIc9pjtDDFGo7Whd/aQaDjn6NNnufzx+0nSgsHGkWeX+aRD3JWxNmMP4grj5jIbd46xZBUYtDaUWUwymGPKABVYimnC7KjP5kNX0I7p21pz8KzUhXZXpsdqSPNxh6ibM9sfUNea9fuvU85joo6w9/lhj7iX+ePvbowp5xL9Sdem6KjC5BFBN6eeJYyvLFhgk98N48obEkTdgmKSEg/nkiPUlnAwpxp3ZL6rABXWFIc9f5x+LlykAaCaJcwPe16lCzA4d0DYzwi6BfU0cec9QDcKbKMI0hLdLdCrc6orQ8qjLnUWYcqQeGUmyzrhzvjyBnEvI+zmFKMO+5e26a2P6Z89pM4iynns2W88nKPjinxvQDFN6G6LWlnHFaYKJHoRVSSbY0wRYqsAnZaiGn5mg8n1FZJediwvbsqA/n0HWKO8Cri7PpaIzqhDd3NMOYvdXFrywy5BWtI576QytVy7OqkwecjkGfk+a1h/GFfopMTkkd9nZ2NMXYRk+32M0f68B1El0ZG4ktxzt+DL/tqH+dDXv4PTYOt//+evSAZ7Jx8frrnQMO73zh3cV4sWLVq0eKXBqtP9vEJxJxnsdwJ71trvUEp9C7Burf1zL7SN28VgX6gZ+c3QNBm/0evvyR861gZtudn3SQN7EBP5tfUjn5+8cm2Dc2fE7afJdV544Dmvul1uX9bUeyZp4WswTR1w9pHLHF1do8pjzxDLPPIm5XEvo5zHFPOEMo9Iepl/Mgd8Xdz0sE8YVV6pmg5mrm5ykSNrclXjvRWfF20M4qO45ME3PYXShv6WNLluavaCuCLu5sfG2TjyjPeGx453dfuA8d7Q19019Zzrr79KkJZgFflBz7OdciaMYnB+XxSVVqHTEmqNtRAOMqpxytFT24yvr9JdmUjuyClRlZacqlJ4x6AoLbBW2IM1Gh0JO21yUmGnID/oocIaHRqCtJD8rDak544kLzpJKSeJqCRDQzXqYIzytZJxLyNenRGuTVGBlXWOOsJMihBThNRFSJ1FkmcbdyRHqiAazKmLEIzCunweQO/sgeQpq4BqHvucaJnFRGlBNBA2VI46Xq3aO3eAKULywx7GheWqPPJjtLX2LkPp6pTssIcKrG+iHg/nBElFtjugzGKqLCLq5gxfd41ib0DYz9CJnLdsd8DRM5skvYzIsWodSkMAtBUWExg5h1GNtTC+tEm6Ls5B1SwhSEuSM0fYIsBkizyirTXRYC4MPDQErsY2GGTYMsCWAdVhV76UlWX01JbPk1ojyuVGUdzfPkInJSowBL2Cehpz+OmzHO2sEiUlaxd2MbWmyiOvPm6M7bNJl/Nv+TRBN8cUIeUkxVYB88MeV544z3B9xH2//tOYImS+N6C7NSLamKCUlWukDMAquQaMwlaBqHDdfOX7fc/+dLSIRFiLd2K69qnzREnJyrl9qYM+7DHdH/goVtMeLoiF+eqwXuR0uwXVJAWjfG42WpmBhuya1BxH/QwVGibPbFDOkmMq7sa1qmHJ4WAux5NH6KQk3JpgZhFmJqrhJgqgXe5WxTVf+D8+zr/7A7/lNF/PbP+1f/aKZLC3JQerlPqnwNuATaXUZeAvAt8B/JBS6o8Al4DffTv21aJFixYtXh2w5m6P4M7ittxgrbVfe5O33n47tt+iRYsWLV5lsLyiw7+nwavKKrEJ8d7MnGFZgLT8XvN+UybTGDlsbh54U/bHn9rgkQclzPv4UxvenvB7tje4/+JVAG+QsFw60+3PWNs68GboaS+jKkIfym1ez6cpgw0pCQiimioTG7RP/cobiOKSi49cYuWsiA+a0pG0P/fhwaOdNfIsJkkL1s7tEXVz6VPpitGb4vG4nx0LmeYTCRlpbbytGsD0sE/iQmlVHh8r8QjTkjAVgY7S1oc5rQvX6lCENFMn6mrKP5oCd6UN5SzxQpumTEI7cY5xBuhNOYcvsndCIh0aH5prRDt1FhGvzgh6ObYMZNkyoMoiKSlQlmoeg1GE3YJykkooNZK5iYZzypH0sYwHmVi65RFhP0OFtexLgYoqbBmy98n7iNKCuJeTnjnCZBHR6gzdLbCVjL8epxISTUuqSeLDhY2wRSkIlwwPahea16Ghc/4ApaT0pzjsMr22SpiWdLeOZK6cQA1tMVlENYuJ16eLD0OtUVGFjmuqSUI9SzCVJl6fosMa7cp/9NCd42sDbK0JhxlENSqpIK5hK6NeNeiZghoIwCbyneGisNSpwkYQTCy6kC9ME1uUBZUr0GADiw1ATxWq1KhMY6cL607WcvnCVYAGNQ3AlRJZ9xurUKWifnaIzSNUUmJmMcEgF0OHWsu4XQjcZJEXPlXO8KAxO9BLy+mkpJomYBXlJKWcx74va9zLvBlFmMg134T/QYRayZkj2Z5RmDxEDzLMNGH+zLqUZvUzjp7eIl2Zkh31vPAq6c+lBMiFzYtRh3KWkK5PfEhdO5ON0vVYnVxfYXDmAGs06Yb0fZ1dWxGLwm7uxXvFNJVSJ9dXVkc16dqUIC1Q2jLfGXL43Ia3RARJMx09u+HLchozi2aMtTMYafajo4qwn2GymGKceqEWynL4yfuIurkXUKGsNCBw9plBVPG27/0ZPvi1J+0Tboxz3/1PXrsh4hYtWrRo0eKW0TLYlw8vhcG+mLCpYbXf2T/Hww9dAeDKtQ26ndwzzRvZ/V0vNO/6oifp9mdceW6bNM3p92dEcUkY1sxnKZeeOct0FrO1MfYmC/21MYc7q95Ivq60bznWsFSlDbP9AbNRl97qxLPaKCm96XhvY4y1cO1T52Xd0KCDGt20inPF/HEvA22xVcBsb3DM6m/3ygbnX/8s/cbAOy2kBENb9wQqDEjHNbOdobTSemBHmiG7p+tl1EXI9Nqq3wdA31nohWlJMpgRNgYJjpU1TFAFxosedFpirUIFBhXVUGuy51aZXl0lXZ16m7xG4BGvzFBhTeCs3YrDrn+qbsoG0s0x4dpU2IQrNUJb6lFH2K1V1NOY+NwR5fWBP8Zq1PElB5OdFbrr42PsP+zlXpSik9KbBjSlINHKnHqaeJMClBVLu3lMcdgjXp2iQiNlOc4+r2HZOjS+DKVZd3Z11dsNilBq6t8L16ZgFfUkwZahlI1EFaojgh2bRdCcsypAb02xRQDDAtIaG1upH6hA1QobWeoBmAR0DnVHYSOFqi06t2DAdBQYQCOvAXpuUaW8hgEbgUkUdV+YoSplP8HEoHNQpRI2GsrfAGqmsZFBlRpq5HcRYOchdhpTj1JhPhP5XMbrU4L7jqAIMOOEepxSOyFcOMwwsxiU9SVSTRmQ7pTCLsMa3cuxeUR5JNGb/KDnWVrn7BEqrjDzSARsrvyn+dwWo46wMhc5qWYJs70BnVWJHsSrU6KVObqXo9IKM04org+IVuYc/Nr555mUNNe4Tkq5rouQepZ4xrgsbPNGJE3owCqqWUy6PWL27DoqMITdnHLc8faLTYMDwP9d5RHdzRHx6kxsG/f7npWnK1Kup+MKHVcUh13QlvyoRzEVoVO6MiNanbrIQErhzs3e02fQQc3+1Q0e+LzPEPdyqiKknCWUWUx3fSzbd6VSX/5d/5n/5/e+6ybf2Mdx39/+xy2DbdGiRYsWLU6L1uz/ZcStMtjlJuC9bsHla/1j718v5En6LRdHz8uTLpvO9wZT6jrgySfu9+b3+wdDHn30KdbP7rF/dYOqCjzDraqAMKxJOhmr24e+1CWIK59Hq8uQZGXKbHdIENXYWkkzZcf4wqjyOc2om1PlsS8baUpoqizy1nS9jbGUQRhFlcV07ztweR8oDvpiEl8F/om4nMXM9gdEaUF3c4wxium1VdKVKcnalOTMCJOHFHtSDhD1M2wVEG1M0N2C+lCe7ht2oLRFd0p0WmDzCGsVs0sbPoeYHXXpbh8R9nKscewkMigl+ZfSlbsAhCtzzFzOgylCVGhcKYoidE//9VEXM48oRh2y/T7dzbEw7k4hedAqEHbsnuTDfkY1TYjWha2p0AhrmUfYSstcLaHYHaCj2udptbagLcmWzEu2I7aDptJE/VxMCowicmUh4Yr8VmFNddSV0otKLP6asp6wU8g5C6zMcxYR9TOiVWHiquPKjFy+l1r5vKNSFgJDMMxQvULm1CpUXGNHCbZWqMhAUkERoNYyYeMWn1u0aY1ZKz2zDDKLPgqgVKhaYVYrbGTRM40NLKZvMYkiPAJKULlGTSLMtT5qmKH6hbBLI+NAW+wogbhGaYsdFmAUah6Ci5BQBNiOsEOMgshKfrUZY+nML4oAe9SBuELFNSqtsJl7/tdW9h1Y7EFK9sS2lIUAKrDYSqOi2udWdVKiQrfNWmPLQCIKTVRlFqM7JSqqfWkPVsln9EjMFqL1KfU0lsYH3QJbBRT7kj8tx3Ku6zJkftgjdaYX/Yt7hMO5GI9ksRxbZAh6OWYeEWxMITJy/vLQR1jqeSwRqcAu9AZZJEw8sNSzmNFTWyTDOen2EUpbsp0hVdMkIDR0L+5JFAgkD10G1NOYapJKmVK3YH5VrummFKoxwOjed4COa7mWJynUmuKow2x/QNKfuxK1kmgorflMFvlIDkgkJuzloKwwXqCYplR5RDqYEw3mxBsTqnEqWgAj5Txf8fd/hn/zu3/bC3zDL3D+e36wZbAtWrRo0aLFaWARv+ZXM16xDPY9+UPH/n9Slf7vr3vDIQ8/+qS3AoyS0ucGqkqME3qDKZ1+xnySeuu+xly+zCNK1/qptzpBO9Xf0c4anaHkWvobY68GDeLKW7GF3cK386pmibCjqPbtscJuLkXeTrHaqByjfoZ1hgKNgtVaSNam6KTyOaiwnxH0csq9vjxFOsOCYpISOtWejisILOHWGFsE1EddbKnRnRJbBJRHXapZQrp9hI5rzwKbp3xbiRrTzmJUIrk9YSupKGStEpbWL+QpPZZ5tpOEeh4TrMwwzmpOpyX1UUfY6TDz6zcmEapXSH6w1qI0zEPZvnJMLjSofi5MrwggMNT7PQisGJr3ClS/wDrWZPe7mCyinsXOjjA/ZpmntPX2czqssUY5Zl5iy8Cz8njLGfCHteT1gGCQU48Tn3PUSeW33bQRwyjJaTtVKkry3MHq3LOKxjihiXaEnYJwmHmGb6uA4voAY5RjwZWYEFw8wE6EveqVDDsoj6tuFQumWGnssERlGuahsPpOJcyy0ti++7xYRBkcGfR+jNkTBqKSCtUrsaWGWsm5naQoZb1ZAHGFXsvkvE1i7DxCdUq3bCI559WZ7BOEtc1iybmHRhhaVGMmCbqfCxuvNdQaM1269gLrc64oi96YYSexMPpBDkXgvkCMrDtOsHlEsDpDrc9lXgqNnUeYcSJRgGYdoNrvS+SolkhHsd/zUaKgU1AeduX8RpXka93x2yqg/8hVVLcQZnrQodzvOdtJOcaGvSptwRmNhP0MFdeYPJT3AuM/kyDG/mGnoM6duj6pRD/gjE3yw65oDQaZNKWYxWKdGFe+IURjvqKiGpNHFHt94o2JXMtum8X1AYEztignKfEgw1q8Oj/siVK/qUAwlUbrRX4bI98DYT+jniVUs9hrFaLVGaYIsKVEmapZ4k0tynlMZ2PMl37nR/jX7/6qm37HL+P+D/xAy2BbtGjRokWLU6PNwb58OMlgTyqD3xoFXDgzYTqLeXwv9c3JAdYGBV/6ZY8RpwWmDnxNaNOUuSoDth+6StzNRXGaiKF9d/sIrBKm44zClZYn6yZnILWMhbfCa5inDg11FpGPOhijfePhaDDH5JF/uqsmqbSR2hwT9HOxckOUesrlBhumpJNKGF5SoboF5rCDyUPJxUwTqmlCOYuJuoXPe+i4IujLk2g1ckx3mFFPEsKzI1RaLWoKHauxoxhyqV1FWWGroeSDqBUqqRZMBWEfKpYxWiuK0mCYQWCk9VlUyxNtp5R5DIww8sOOPOEHBqpAWErucqdxLWOYxqJ6bdhLHqIiOQ/VKEW7XKUeZNSHHXS3oDroEa7OvGVg0ClQji17ValrfG5rMXlXYY0eyDwRGZiH1ONU2IyWlnDx+UN5fykfaotAWFZSCeMuteT+XH7X1pIDrA67woYjMUcPhqLQtoXk+HQvR3fF3N8WgWNz1kcQVCLHacqQoGkyMBcFrFqdQx6iVjIZV7ZgYLZXSW6zYasrBbZr0DuJ5EgB1c+xjr2w7iw0dzs+T1ofdbCl5K6bXJyOJB+qezkUoahwE5dPdQzNTGOqwy7BQHLA+fUh8cbEs3nlrCd1L1/kS0Pjc60EVtjfJBYGbxVmlAgzNsISmYfCQi3ChuMa1amwaQ37qbDbo3Qx5tB45laNUskh9jP0IJO67UlCNUk9mwzPjah3Bj6CoFxUR0W11DLXGhVXck12xA5SdUrsSoGahthxIvneeQSBeV50qVHkmiL0uft61EGnheTYO4vPGXEtURhnUVru9dGukTnaepZt5hH1PBZ9QVyhIrFUlOvcoAYZdhZjJslC8TxOZe5rvchT18qz88bmUMW1syBVBCszya9nESaL0N0CNcjkc2sUZtRx9bI1QT+Xcdea2kV9GjtQFdbEGxNsGRAMM+ppwhe9/2P8+Nd89c1vCEt44B98/yuSwb66A+AtWrRo0eIehcLa0/0AK0qpDyilThdTvkfQhohbtGjRosXLDwu3EEA9sta+9w6O5o7gng0RL/dhBRE1PalKPhRf5v32Ab74zU+zvr3vu84AzEc9OsMpcVr4kpmmowraSqkFEK/OXDhFQqrRypx6FmNKkfVHKxJ61J0Sm7skvwvNBJ2C8MIh1TNr1LPYGybUs1gS/84uUIVOnDCcL4Qf44TZZRHR6Lgidj0fVcdZvq3NFpNRaWwWoc9MpNB/ryd9Q5sSicDIdrNQwmqThPKwS7QyRyWlhHhXMglPFqGECGuN3e8uhDAAUY1eySRcC1BqzH53EbZyry8Xuau4FlFRGUi5SLPMMMdOYuq9noil5hF6fYbqlhJy1a4sI62cmYCE1GwWSnjYKlRcQdeF4foFZrVCZRo1DagvS5mBD9W5eTKzGFsG1POYcDhHr0lXkHqnLyFGIHAiM7tUxqI6JXprCqWmfGpdQsChkTDwNHYCGyMlMLXCHriQalxDqakPuiJm0RbVKyCpsEepE99kmMOOnxuMWPmVruemHjhxUBZJyZJG9mFceiCScLbqlIum1LUSQU9co7qlnAOrRLzThLDdNav6uYi/OrWEVpvzHVhUobFHrt+pO9cqMBC6a2oeYScJxW7fl1AFTlCj12Zyjc9ceHKYodKK6spQrs1ocbwqqSQMHleYaSLXt7Jy/pX1IXiWBEdU+pgoqrnWKYNjaQRbBLLN1ZmUDaUi4LKTGOPMJ3RYezMPFdZekNb0dG2uGVtpkgf3fNrA1pp61BHBWy8XU4hOKSFkd4wqqv2xNakTpcS20rhrrnaCrmhlLiVCRlGNJJQdr0/RvRyTRRIGjmpUVBF0i2MhdNUrsdNIvodGC9OLpsQMo7ygqhqlhGszKT1qbDfTUq55K83NbREQDHIpi3OmKM38VAc9CWlHNdH2SL5X5pG/FgHqvR71NPGmLOHaFFuEkvYwSkSTgZFzFxpJM8UVZtShmkgZnYpqVD/nC/7Qs/zob//vb3wzOIHX/cPvvSshYqXUlwP/xVo7VUp9HfDrge+21j59mvXbEHGLFi1atLgruIUQ8d3C3wVmSqkvAP4c8DTwj0678j3LYN+TP8SXP3KdleGEvIjY2t7nzANXidKCIKrobo9Q2j2Ndkqxrxvk1PtdX7gfDudUo46IYVyivTEDVx15skJDfXUA2ooQo1+Isq0IqPe7ktTvlF4gokJDPUoJ1ma+7MDMI3lyrBwLc/1MfQlBZODMHCxUGxZVW6qhRudigG5DEQ3p0p2LpRZOyv2taovVYAOFzsWiTo8CiCw2tZjYens7VYI+ClBHsbCt2hmrxzVUeiEuCQw2rVHjSNgkiL3buQy9F0GpZTltsUMxJbDJwqyAkQgZ7FEqDNmV46imBMexKcoAvTWR+TpKMZkIWprCf+WejlVaQamxk0TKKyopEUFZXwJCZORYAiuiH1fGYUtnIbeeoUaRiLb6TlwVWDmWyEAmUQqlZR07i2WsDx2i5gFmtyuMdCCiN9wyemsqDDMLZdvdQtjFJPbbUd3CC8o882qYY62cGMq4qIKYH6hh7vcBQOhYS68WQ4hCO/arsONGsCQM20yFuetB5lmhikQEJFGBhTkFocEmBlUpzPWuHNPqHNUrF+UtB6m83s/lWgmNRBomiZR2rM9EzDNJUGlFvdfDFGL40ZSMoO2ivCY0crwu2lGPUi+Y8uVZZeAjBVgFSSXX4G4XM03QqRPdOBEdgZFIyDSS8zuL5Nia67dTHmfBs1gMVa4PKEYdon5OkBaEAxENmXmELUOKIxEvBmlJ6sSIKpUyKDuPqKexlEMpERv6MivH2ppewtbie58G3QLVLXyZXGNr2dh32ipAKSvMPjBU1wZk14fEg0zsL52wsrFcRFkR5ZUh1TQhOXfori1NvjNExxX5YRcdGqJ+RtDNRTRZBr5MTvVz6oOuGHJsTX3DhXq3j0pKdF+Ydn3QRaclJovEoMIo0u0RpgrIdwe+L28j4PLGL0A4mAsLdxal1TQRQWYgZUu6l0MV8Ov+xKf5l7/td57q3vDwD/79u8Vgf8la++uVUv8r8Ky19vua106zfpuDbdGiRYsWdwF3nZ2eBmOl1LcCXwf8N0qpAIheZB2Pe4rBPhA9ZL//Ld/IcHVM0pFSgjgtWNk+ZHDuwJfSNMXRoSuDQFnCh6WVnI3kaZzAoEaxlIocpVLegLAkG1mR19eOIZ2ZYwY1qlRS6uBMzTHI03Cnpty2lANN3Stu+3EH8xirIciFqYpxulx4OndP4qFCFRZdgg0hmFlMBMFEWnhhwQwMOEfAeijrBzOLVaALhcrF2L1pO4YGlSnHDCzMA8+YbWCxvVrmYz/F7HWl5GIWo4dz9NZMRAppjcpcPrVW3sigYS9NDtceJd5Y384jMbKYR94oorHBU70Su1qgZsLyrDN/Z3PujOC1L6sBx2TiGiIpLzHX+z7/iLZyvIGRMR50xHAhcuwscgfblK0AhJKfVpm7NmqNzRasDWeA0eSY1DB3ub9Irru4lhz1YSpzkFbe5lAiAm5eQMbgvmDsaiFRAQUqC7whuo0NaiJza/ul5E/3O9CpYHuODSz6KMLOQ9lXWqOmkZTnBIv592YRo5Rwe4JazWTMeUi128caRdB1WoU8Iujl3kBBJcLK7TykvjIkWJ2L2cUwp97po9LS2z5Si6GDtVLuYl1JVlOe1OS/a1dOplOJPKlhjjmQ11Rcy7zW8lm0ReDPcWPVSBFg8xC9OpfXA4sNrNg0wiJKEEpJD9pK9GGcUB90mV9dpXP+QBondEvsOMGMU2nuMIul7CUtfCRGrv1IohqutE0FhmJ3sGh9mFSSY1yVUhxmkTcpUU3Jm9MaNMdvqgCTReSHXXoX96S0y2kKst2B1xCosPaGJE2JXGPaYXLJxTdWi6aU6IUpQqpZQrw2IdycSpMJ11yjPuowv7JKsj6R/LrLxdoqoDrq+Jx1OMwI16fUo5TiuownvbjnS3HKwx5BNyfs55gikNK6aSI55bAWpjzIfD7d5iHVqANG8cV/6TF+5Lf+rlN9Rz7yf/7du8VgzwK/D/iItfY/KKXuB95mrT1VmLhlsC1atGjR4mWHuGfd8wz2z1hr/3zzj7X2klLqc0+78j3FYN80vM/+6Ff99yTdjMGZA3oX91BBkxvNUWmNHZbY2GATyV+aRNSp0TWFGofY2FBvVZiOwiQKVVlULa21TMflL2uoeopqqKk7t5+RHoNxKtY8EDVwYrBhhapCdClP6LoGjBitY6RZta4UupSWX8o4NhMqbCB5Vhso9Nxg48UFGo6cHWApja5VpaBS2GSR1NWHkShLIys5vizAJrXkmlKDHoWipNzMhRHUCjItucBG7ZnU2H6F6Rn0VGNjiyocEzYsljVin0jqaLWysJrLfsYhVouhvJ1FohI9M4XUiOo11zCKFyYZzjReuQYOFIEwulKL4roIvLLYxtL+zEbGMxphi0i+s9YLRgSYaz3KK6tEGxPUyhw7SdBr84WFpMtp2okzhgCfM7SZKHZZy4VdziNZrlN6lbUeSgME1Stl/0UgLNblaG2vErYcWUyvlublIw2Vy70OamnllmmJPABqFmCeHQq7Wp9jBxVqGmB3ndWhY9bkgc914nKkZr9LddQlGM6dcUAuudJpJOsFYn1IEUjLuHlM6RTT8cZE8oX7fUwZkJw9op4kXlGquxKN8LnnTgnzSKIdWSTN3J39pa21Z6JmkogZvlOjqsBKHr7QC0tIp4ZWpZa8LqJuJ3JK9CKQ/HSvkmVB2Pw08spjtZItbAuv9Smd6Ut8/nCh2M5CYd6Netnlf60zf1BJhRmn2FoRrM3kGm2uMXc83uLRXff1laGzF0Ra/iUlxfXBwlIxLUWRnJaoyGAmsVcC1/OYaGMim0qrxXUzjxxzlSiDOexIc4KVuVzjSSXK/izEOm1KNRG706BTEPQKse4spY2fiqSBQzAQdlw7Qw5rtLDnNVEA58+t+oYHyepMcvBDYfD1NCboSZMLpS3EFeXOUD5bUS2K41qhFHzBn/w0P/xbfs+pvkbf+M/+zl3NwZ547TFr7ZtPs37LYFu0aNGixV3BvZqDVUr9MeCbgNcppR5bemsA/Pypt3MvMdgvfLBvf+5//A2Sx1ifwXYmucDEYlJhnCYQta2JpP1WdGSkkXNkmV3U2KhElRE2aKjhZ4dgGmNDhEUaIaJ1pwZd+5yp1cI0w4mh7miUkZyp1Qv2bCK1UAfrpYvJCJNGQ7nUZU9XClWDqizlcHEMQdM2roY6sehCLYqsDASZMGAb4FmxKoXlB5k0zrYaVCUMN9iLJF8dS56yaYRdrshGw5EhGLt82cD4nLCqLXqs0NcTYQ6DSp6mI8dKD1LJ+80dG4prYWHDSubLMVfbq4R9Njlfx1zVLEBNokVtY5O/jGthIpXLf/VLyXM2begGJWoaLthXXEvuPa6EOWkrOUVtpYZ0EgtLqbWoY/slHCWOpRqvssbIvlVPIieEVvLDTX62U6HmoW824POryvo8oEormQcFNnTbVaDmgTDgJldtFHYWSS1tWKP6hW8LR6khXVzPNjaYlRqVKRnPKJYxpmahPi5dS7h5JOymadKwOvfWmM37qp/7mkusRCPMLBLGHkpemUp7a8lgdS5K64nsF8DsdcVu0dWrWqc47dy/5+penV1mWMtvkPOzVNvqldhlgJnG6GG2eM/Xzxo4N5dWe3vSTg9EQWzGCbpbStSk1N5WEW0X+WxYXEtLamOU1DOrbilRn8PY1/wCwn477joAOe/TiOragHoeoxTotBBrT2cT2Xy92jzyjTTqSUI56ko0oLEldTXD9TQ5pra1eSj50Twk2Jj6a7ax6MQoiRo45Tu1whx00U4rYucRKi2xRkmuvQoIh6LyradizVo7i1YVV35fjQZAJxX1KBU2rKyvmbZl4FhuSvzAHuVzK77lnSldHtxdf9G5EWbsGkA4K0eU5S3f/Dj//B2/9+Zfwkv4nH/+f7ysDFYptQKsAX8V+Jalt8bW2v3TbqdlsC1atGjR4q7gXmWw1toj4Aj4WqccPoPcL/tKqb619tJptnNPMdi3fGFif/o/nX/Z9qfKCBuVz3td586oOqqPs2AToOoFS9aFwobCcHXpWG6vQOcxQc4xllqnChNalFGEs+NKYYxFWdC5pe461qHlf10eVy/73G0z1qbrmCsDDTL35FlaXy9rI6j6GhspjJRfoktLMDHoOehLXVH4pbUwn8C63F+F6UjdoaoVlGBji42ESevDQHJcqWt5lxhMxyzen7pxKlAjyY8TWKnFLYXVUkqeUTViB6OwXZlzM6jRM6fmLZV3IWocjaxRPpfpVbOuBtXmobDjJg/mWBppLTnmpXUbs3jVcTWXSb3I6zYOVo5p2CpYOFkpV4u7mskcBFZqNGOzOB5AHcSe0aq0knmwjtUnFr0foEbxon51WPg50Pux5KiVde39Sj/mpvG5365rfUbgGqE3im3njtXkCm1sIDXS4s7BTlwdrlNu2ywSFpRWoiidR4v2gk1UoXZ1x9PQ1ztjkbpL10giWJmL2jWqRclfaeqdAbZWhBtTyZlm4SLSMY+k/tXVkNpJ4h2TpOFDjpm6+utaeyaNVXIMYS0OWi7P6520NHIOupVvCm97LrcbiYKecbQw7q8CdOQc0/q5rO/qletpcqxtn6+XLRasrnJuR+VYFLnp1kiclMzCEU62a73yWrm6cOvUuLZ0ivdEzPyrK0PPXn3Dc9ekQmmDNVpyuUkpdf8u5960XdSuNrne63nXNFsGLm9uoAipJ4lUXlSiZA96udT8FwFm1MEUAUG3EGenVOqd8187S7Q+FeYLvvVj4zlgZjHBxlTOUxPhMYrPf/cuP/T2r33e9++N8Lk//N13Kwf7PuDbgGssHApsm4Nt0aJFixb3LCy8Ehqu/2ngUWvt3mezcnuDbdGiRYsWLz8sWPPii91lPIOEij8rvKZDxKeBzmN0uWRjCL5EBqRMyERqYUBhAh9WVlWIzjXKQjgxqEpMImwgIVQAE4lIygYi4gIREtWp8mHnJkptNZhIhEog2zLJ88uMdB6jKin3AYj3LbqwItZKFKqCuqeoUwlj1p2CaBQT79boicZGFpNKeFkVLnyrcKVRrmQo8J4LqJmScpuuEeGJK92xiSygcrUw7gAnqgI9VRCBmrl+rbPg2HHYXSktUF0R+9hhie0aVKGkhKjUUrpSahGljCPMbk/CkWkl5vuT2Jumm+s9CQ8OMxGyNOUy4EtympKO+qArBglJtQjlGYVpBB9JJeEuZ5+oXXmLN9ZInXgmNovH2HKp1KbQMmeJwWyU1H2FnlsxEZko9GHoS5Fs4kRRhROFufBzI7JpepSirO9pTFpjjxIJvwJULmQXOytHFzpkKd1ArcWSD9DbUhZiJ85Ksp/7/sE2D9GbU7CK4tObvhdsI+JRylkWNgKfLKI87GLykGhlTnBm5MdkCxlXcWldrAWTUvrG1grdL1wvYUkrWGejqTdnrvRIe2tGLwCbh9hhIfafeehLy9RKvihvSWtst0YZKUFjP12I2bSI5NSKmNnYTiWlbEXgw+i+dKyxpgRJU8wjH0a2tfI9i3W3oD7sUk0Sgl4hJh4dd/0561WMohqnlJMUrcWeNNkcL07NLCZcm0p5VS+X8DVQHnYXIedmmy5FYmuFzSPqWUydRYR9sbMM1mbYWUx1JNd4069VNT2Tm0YatcYUAbYMCVdm8jlyPaptFRBsTpwRTyXleWntxXpUC3tWX542D6WMbRZja82v+7Of4p9+xe9/3vfXjfAFP/pddytE/H3Ao8C/BvLmdWvtd51m/TvOz5VS71RKfVIp9YRS6ltefI0WLVq0aPFawCvA7P8S8O+AGCnRaX5OhTvKYJ366nHgvwMuAx8BvtZa+2s3Wv6uM9hlungTqDIinCvKYfG81+NDi0mOs1CrXZlPZNClJt4zC/ZoFiwQhOX6oUSKcghBrlAGgpnxDQHKFU25WqKqEOWs58KZJZgKAyoHWorZS8BIuY8yimgsLKnua4KZEbvFWFH1FWjlGXKQg54bVC2iKc9ASzGGMCtihgBOjLUgUKi5glBYKoaF2KfkGENV8xDbcaKbbi0GGM4sgEqjVnJhrKlBzTTqKHat7mpvz0hcC8trWEpgvDWmrbSUa0S1Z3HH7PzyEBVXUnZSBWKsHkgpjy0CEYF0C6gCzDjxBfLh5lSMB5atIOchZr8r5SdWxFBoK8fQCLOMwnYrzGqN3g/BsVI/H9NAWK8RcVcjFFOZiyBUCnUUY45SEcQ0Lc16ro1aYyNYa19qZLNIGGsRYsrAi3JspUUE5OxDcXaGKq3EpEFZaeQwi6R14FJpFBZfCmWdMMxmIXptjjno+LIi25g1NEwZpOwki7xpv60Cyr0+pgiJN8bexEMPskWrRbMkFuuVMt8No5xHTnAmbQ9VXC9aC3ZqaW5QatQswO6JCYMXi0U1dKpF2U1kxZjEKExq0J/pS8TisCNNEdJKmFoRYA5SMeYo5VpSaYWZxGCVlBXF9UJ8l4ViM6oQc41ZTD1KpWxmklLNEqLBHFOGBKm0sdRJhTWa4vqAsJ/5lnDFXt+30hTTCkXQE4FXNUnIdgcoBWEvJ16TCAQadFTJtWxd6ZBr29lc52YeYXJXGufeD9JSjCGMJlybYpzphMkiwsFcWHAmrexUXPv2enYWU+93RXw2zCXqME682IlA2nhiFJ//vif5J7/pD7zg922Dt/z4X7srDPal4k7nYN8KPGGt/QyAUur/Ar4auOENtkWLFi1avHZwr5bpKKX+prX2Tyulfgyf7FjAWvs7TrOdO32DPY8kiRtcBr5keQGl1HuB9wJcvP94Du5lh67ReUx0aKh7mjoVW8Nl2KikjCS/6t8zAeFUSmHiPYMuxIg/3pHSFpDylrpvKNYkJ9sYRoRzJXnVWphnw2h1aek8Z3yOt3nPRMJWO88EgEVVtWyrr6h7amFsoZdYtpEn1WLFoAaKcAb5Jtiw9szbaiAStqxqi+lorIZyRewdg0y70h9DeKDQR1rKGwrl7fvQlnpV8sk2FFtKk4LOLHoSYFdqqCSXaKNSWNskhmdibD/3JTWNgQGTWEpjzs4xD86lTd4skNzlNMJe77kcnTR4sG7y1EqG1pb6eg/dt65lWoQ5iFBammKruAIViA1nk7PKQ+qrQ1RSEWxOxGDACCtRvdIXzuPKd3w+NKnR50fY613PCsB60wZzbibjMgq9H2IHtbDypuTIWQuqaYDt1ARXE1/OYAPr2wLSK9FkcHaCPUocU5Y8aX3YERP3SSKt1oaZtAicR5BWhHEtLFtZzCymmqSoa7KPaHXmLfSUEhu/YG0m22/MGOYR5tmO5GIDI+VJsdj2qaGcL312AnmAOeh4tmSyaNFcPpf2bo1hvq006aNXJaoQGchCfy7Lp9eo5zF1FhOvOgtGZ5CvXPmMHubYebSwtWxaGc4iYaelPtagYbmROVqMEOwo8Q0NlJX8rH56gFqbQ2AJ1jKJUBx0sDvBwuZxknjz/HqSisHE6px6rye5aPeRKK8NCQYZ1TTB7vYJV+aEmxOxhhxkdFYyF1URJlkd9MhHXcJOQXLuEKUs+ZVVlLZiTKEtOnSf61qj+7k04IgDBo9clWM06ljbSJNFWFdaZLWlOuhRjFPSrRFYRTDMwCrKUQdVG8nVujaXGMgvr6G0JdqceDtS/0VlFbZW1FdXUNoQ3n9IuD6HzH0pzKXEzMwj+aw1UaS4ks/Gvasi/kH3+6+9lI3c6RvsjR5Pjj0NWGs/AHwAJER8h8fTokWLFi3uFZh7k8Faa3/R/f4ZpVQMPOLe+qS19vnmCTfBnb7BXgYuLv1/AXjuDu/zlqDKCGWcsrZTY5KCfCsQQ31nyq9qsUFsGgME09iZNSzaAgpzhOyMQhlNOLHUfVCFdYb80m4uGhtvAKFqRbVi0UqM/FVlCTLJ3QpblZxpMLNER5Cdk3ZydaqwyjVs78t2wyNLoK03tVDGEo5CTAJ1R4uFYhEQZJZgVpM8o1BFTL1aUw21NEUwlnhHjCR0plAz7UwRwLqn/rqrMKmFtBZD+gBsd5E7DvYDnzclcorjCKozRhoXKEAb1CiUx6/1DB3Xi2bkwwI7ihcWiLXC/Mo2xfUBkbN4Q1mCjSn63NhbugGiVHRqUgvotQOvMlb9wuXMXB5VWWGoiTxJ694c4hodG9Tc5XSHhRx/pcV+sFEIDwthnk7Fi0ZUyW8Qdazac3Z8mWvVdhgtjCG0Xdga9mppN3cQLUwijlKsstIerydj1muZjL3U2I1cctlrOUxD6qs9QCztUJb4jTuSJ9zv+twkRYiptGuKHYghQacQJWgvp57FRFtjybNqYbj5M+uEA2caH8j5DYaZqKuNtDzT6zPX4EGayVef3BLWWgQE/VyahgeuxWFUy++usxJ0DKi+NvQKbj2cY2eJM0mwxJsTVD8XZXMtiuEmh0qtKZ/qEQwzqp0+pgwlP9jPCM+OMHtdabvXz4Thnp9ITjbXMJV2bioyPl9c7ay6D7IifOBA5s6phG0Wooa5M1sJfLtF5ZS8OpzKuoXkuc0spjrqkO8N6D9yhWq/T3z+wNl9xtTj1C0fkj1+Bp2WBGmJ7hbE9x0SZRH1XKIn1TQVRqkt5WGXeGuMLULqSYopA8zVVYK0ID53hC0Cyv0eOqqoJinFYQ8VGNLtI6zRmDzE5HJtxsO5z7sWhz2SM0d03nRFrttJQj1JCTqFRHucnaTJQ8xhR465UxJsT0TJbRXh1lgav39yW1rUJSXVqEO4MkP3C8LzR5KXd3lYczgArt2zIeIGSqm3Af8QeAr5xrqolPp6a+3Pnmb9O32D/QjwBqXUQ8CzwP+A9NZr0aJFixavYVh77+Zgl/DXgd9irf0kgFLqEeCfAl94mpXveB2sUupdwN9EMnXfb639Kzdb9gu/ILU/89MPEhSWOpba0mO5zhfCaRTAjo2etDEEfE2oqqHqLkz9g5klmBmnyBUGV65JbiIonFLWWKxWTpkredd6xYJyDQoiWTecGYJJw+oUqrTomahErbbY1NWHzhR6FHrjdlIjysbDUNqvhWKyX25aX59b9TXKCDNuXlMl6HGAyrTk8iKL7RqqlWbOJN+qKjAdYfEmwlkjSr2tzqw0dG9cDyca2zeYWBTLdV8TuBrfYKSxofXHo0rH/GpRKDOKvWrTrFYQgt4/oRR1uRtbBDCLRL3raiUbezcSUcbWo9TlQpWoMIdzKAPJkTU1rkYt7P66tWvhJzWVDAvZn1WLdna1xg5LYb4g69dKttcrF6rgwMr5CaxvUkAhymbbq1EHMXZYQqFhpwuNDaOrG/Sm/I1lX4Cc65Goc/18rGSyXcfgbCat0HwtpsGzCtUvpNbX1ezqfo5azfz/WCXHXWnsVJp6mzxCKUvtDO0Bgm4hOeh5JHnZuJbcmZF5aOpXTR4S9AqvSrZGYYtQFKa1wow6qKT0zQO0Uy3XrnWa7pSYuTQU0N2C/MqKtG9TiFViuGjYXo07VFlEmJZUWUS6OZaWc/MIHVcLw/w8pDrqEKQlQT+XJuJFQDDMpN2cUeiNKeQh9VFnIX93sGWAKUKiMyM5RmfbqIeZqKyLYFFbDIsaz0mCtRCcnSxy9SA5yE5J+dQ65WGPchYTdQvCXi6RmG5B3VhDhrXkKXslZHJ9l/s9iSJoS7Q2ZfrUFtZC1C2I1yeYKpAGArNEalkDg8llTnRaosOa4rBHkBYSPQL5nNSa8rBLtDqT9oNHHYrDHtFgTrQiDePnV1eIh3NpyB4YiusDdFQT33dIPU7Jr6wSDufS+m5lTrXbF+VxpTFl6NXIulssasdBzinwee95hn/4JX/4hb6yPb7kQ99+t+pgn9ea7p5qV2et/QngJ+70flq0aNGixSsJ97TIqcFHndlEI3r6/cAvnnble8rJ6Qu2N+3PfON/w+DzLqPX5+K4Mqxc7s9SDSTv2PTBNomoVZddkuquY4xwnGVWsp6qwCQQzCzVUGMDeayLDmpUDtWKwsaK8FDqQBuTewJX26kRRmfE2UiVCnUYQmwwvRrTgeZR0YayHzUTx6K6B1Vf1LXBzNX8FbJ9PQ5FeedcZlAcN2NPjbCheKFeVbW0ibMDg8qkVtJbhwTW16LaxJnQN7WqbvyAODbV8lrTYF2VUgtoI+c8FSmCiUVlinoV3/C9aUjQNL2vuxo9l/paVSOq3yUjfzOoUPmSerbWmI0cIqBCxujGrDMtjd6n4h6keuXCIabUzgxdmIPq576tWFPv1xiky1y4mlOLNJvXQA3sdqSVWegcmXoVNnFt9xpFcyZ1ubZfiqPPPFzUgyoW7DYwYjLfKb3Lkx0ljh3XUmvaqVx9qnO0aYzWQ1HiUmupnew5J7CDmPKZNbmOewXVKJVcq4Nyiljl2LeZxejVuWPjinqnL+xrfY7NAnHQmcuHQ3ULKKTpgf9Agai25xHVqEM1SYlWp9TzRVPucDCXeuGwXtRj1rKNYJCL049zuwIwk0SYtFPwUrmm6JNYWsu5Fmu21lL72tSqFoE31gfHupSldk5GtlbevF6lFeZI3JBUp5Qa56RaqMuLQJoXDIXN21GKWp8tGjkUgaxXBT7fTGDlXHcq7CjBjBNMHhKeG4nq3CiYRdRjd04CI43jXWODYFtcmJrmBcH2RPY3LFAzicqQh3KdaovZlciDcWp2FRrvviTnuqYepVSTlKCbS53sfk+YumsSoEO5FqpJQnHYo3YN28OuGBDFTs2NVZgyoMoiycOnJdFwJox/FpPtDtChIb3vQBTRmbtmOqU4VO32UZFxaugY3Skprq6I25OLLvm62HkkSvLmug1rH435vPdc5vu/6Bte5K4g+LKf+v/eLQabAH8c+I3IJ/5nge+x1uYvuKJD60XcokWLFi1edrwScrDW2lwp9beBn0RoySettc/3p70J2htsixYtWrS4K7B3qUxHKfU64H8GVqy1v+sFlvttwN8DPo0w2IeUUt9orf03p9rPvRQifrR3wf6NN/wZtrb3ue/hy6w/8tyiwHllESrx/TB7FcRGwqcaKeLXQMeJnZpeo9NQQj6rJfWKQWeKuivinqV6aWykxBRhpjGp9PS0gYUQsQusxSpQzV2hfKlhI6farNG5s7VzBu6qVpieEVP8EvQ0kLCk6z/ZGOE34ed6AFgr/VlHTuiTGmzXouYKvZMsSlk61aI36tyFm1yorOnlCvhC8cbAwQt/XBiysS60kYHEYEPrH7mssiirfMMAkyjqrvL9ZoOJXRj4G6RIX7n1DTKHXRe6xs2bOw9oKz1TRxKiYnsOuYaDhHpnIDL/M87qzZ0gO5d1VVqJ0EdbCdtOImcoUUi4zff/tN7AoREvNcb8aOvs3VzZTSzlGmoc+TCh7ZdSZmTArLi+tJkrPSoVHCQScnXG9yow2NVy0ft1WPoyJTUOpXzoIBEDDSthZZuL4YWtNfWoA8oSrU8pD7tQa6KNCWplLuHkJsRZ6eN9YCMj4V4NNgtE8OQMCEgq6t0++bUV4tWpmEc4O0mqhbhMpaU3aW/KKFQiNoz2SEK0hBICryYiwIrWp9L7dBa7/qDZooTGKulRGtZenKZXMrENdGYRult4q0tw4qIsWoRtG5FWc2yN0X5cU+9L4wBrxKwiWp0RnJUyI1sEcl0WYnGpQnPMjKQJEZs8RA+yxXXQGH6wWFdvyHyRLr3f9AGODLYjlp12ryO2gc6EoR6llHvOVGJ9KqYVjY3lSMqvpPGCwVzvism+C5tXBz35zgqNXBtFSHnYxRpFNJyLKYRREm5HBENmmlBnEeUkpc4idGiIBnOZ97gSEZgrn5JSLfmQJ/cdYuaRlG2tiPWh2Blagn5GfdQRwVQiaY8m9K7CGpM569LAkF0fkp4ZyWelDAk6BcVenyCpiJw5RuWEePU8ls93WPPmb36cf/CWb7z5DWEJv+k/fNuLhoiVUt8P/HZgx1r7eUuvvxP4bkRK+A+std+x9N7//SI32E8Av91a+4T7//XAv7bWvvE0477nM8wtWrRo0eLViNMZ/d9CGPkHgHce24P44f8d4LcCnwN8rVLqc25hkDvNzdXhM8DOaVe+p0LEO7OYn3zsAnCBr56lHO2ssXt1g043Y/PCDv2NMclgRrI5FnMCq6iOOuioxlpI3/KslGGMwgWTKwIx6a4V7KToz8TorZk8+RfSmk2VCjuonMhHY3rGl6aoQqEyJeIbkDILEIYTSou16LIWFhjLPvVRBNoSuN924BhnFmB3XclGwzI3M9AQFqKaUUeRMHMtrE+PxbKQtEaV7gm9jOWJ2AloVFyL4OdAnhKxUB1IwbleyURYUIRiUt8R+zs10tieCHdUFsBE2rQ1ZTTKlfSoUtipKi3RrhhmAJiusLvlNnSNMAm/rsKmbt4Cg+0XmNiVEh1EmK0cAlBP9oVFBJbgkT2UQY6vU8k81UrmyRk+sJZjLahphF0p4MIcWypUpbDP9nz7NjuXlmZe9ALCgBsrucBiD1Jhk40R+SAX9j4PsVGJ7Rv0OFhEAprWgffPsMFUGhvMlEQqCoU54yItkxD2YzGgmERwlIiRhTOxVwNnYjCJRfRUBYSbwtpjJ9SxRYDKQ1S/8O32bK19eU3Qy6W9WyYmCzqSZgPWKopn19BJiakCOhf2pXTCleLoRiTULbGVFtZkWJjt98QKsN7to4dSslFfH/iSGJQlu7xGtDYTgY2ylM6YXiUVhDV2mlAddYjWp6hUylQIrD/GpnUc3RKlLcXj28K0nGAHZ3hRXx+gw5pgfepNH3RSCft00RAzick/eUaYVmgoj+RzEA4ztCqEheYhtpSSlmBripqLuQexlLZYG7hlxF5RD3KqZ1Ypj7oiJBpkUm7SiOjmCntdtqn6OWplLoYeswidlsRnjoQ1ziLMfg+dlJ7h10cdiv0+AOl9B5gqoH5uFR1XcpyB9WI0y4Jpzq+skhhF6QRMUT/DGkXQLTBFSBBXxMM54ao0BKDW/jsy2+8T9zM5f0DghE/ByhwziymvrKKT0pck2XlEeP7QtzA0mZiEAGIEoo20mtSG7gO70jAjqQhUhq003Tc/6xs+mEniRU5BtxBBW7fA2ltquL6plPro0v8fcC6AHtban1VKPXhivZfqh/8xpdRPAD+EnI7fDXxEKfVut88feaGV76kbbIsWLVq0eO3gFtjp7mepIr6hH75SagP4K8BblFLfaq39qzdZPwWuAV/h/r8OrANfhdxwX/AGe0/lYAN9wfaS9/n/31Fc4N0X5pw7s0deRGxt71NVAWFYc9/Dl1m5sAeACmvqIuTomU36W0dE7kkr2R7JE3ghT/gqKdGdUp7A+mLy3uRTpCGw5FGqZ9YWxdHD3LdHs9NIWpB1aymhMcoXwgPCljfnEFkxbh8l2CKgPuqitJGn7r5rG9UvpJVdFkgutwhkHJuOAWVaynasy/0E0sycwxg7cXmxWks7tnmE7ksrMJOJqbbeFIP5xohAxfWidKXJRwXuuKtgMRe1klIh19C8aVVmEyMlQrDIVZXK5ySb1mD+daQNHRFQguk55nroWpj1jC9z0tcjV1ZkfI66gXVWiGoWuPwtkl+tZJ82tZ5hqkKLTaOzRySw2KQWlpy5HGzTQKDWvh2bCoxEDZr8amJk7sfOOB5kubQSe0OX85dyKeRJPndM24CaRJ7xWpeL9O3VOqUcR9MSz7V7U50Ssye2h95Mw0q7NFuEYtgAUlYxzHwrMLPXXbTIKwNfCuNLbwKDmSSyTau8EYAe5L40h6QSQwTANKUncY0eZIvmBcqKmUQeYspQjs9Kk/XGMtBMxQA/3J5I279aUz+3InlaxwBlH7HkZ5UoSbEK/dCh6BdcOz4iYZZqNZNmBrt9arde4JikzUOUEgs/3RVbP2ot+eAyoJ4kVNOEbG9AZ/uIepYQ9iT6EW+PxYpwlJLv90k3x358SsvnTaWL84Cy2MOOGGPEleTPkxK9PvdN620eipWieMyIyX6lMVVANUklohTJ+IO1GdX1PrNn1wk7hWeWs+tD4sHcl9RETXN6JbqB6tqAYG0mkYo8FNvEJaMKjKI86GGKkGouEYtoMEdpy/TaKslgRnruyJfYKAW20sdudCp0FpAdl5sPzSJyl4UyLyC57FLyukpZ/z2ok4pqlBIOM8m5po75Os2B7hWYacznftPT/L3P/+OcBv/tf/6fT1Wm4xjsjzc5WKXU7wa+0lr7De7/PwC81Vr7J06145eIlsG2aNGiRYu7gJelmfpd9cO/5xnsh+LLALwnf4gvf+T6seWv7w3Y2hiTpjlv+vWfoLc6oS5DVGAIkxJTikKxuzkm3pLCb6XNotG20ceeLNFiGZdsu6fGwFAd9KhmCWGnINqYyFMySPNq16qLLBRDcuSp1RShmKdrYTC651SM4BihKA3NXJYNnRVZo7i0RSAMI618Hrk66EneA1HiKW2EjVfCgINuQXB+JGx7GnozAwKzYE1NjskpT31hvWt83uQrzfWetDPT0hxZNy2qwlrygY1lX68UhjMsJP85qDB9440+golrGNAosiNL3XeM1EgzA1VbbLT09FxadAlqpjxrtV2zaPhulBhQzEPf7JykFgV0YKg33NN3Iftu8sPLUKNIFJwrJdblklWmUJkWFu7UxiqQ/drVQuwYV2r0WC9sEcGPwc4jZ3ovhv62CL1CuFHuqshIw/Sm4bcRtW0wFDWrdXl5aQZf+2unaQdHUgl7MEqYK2IM0TSE1z7PXILiuOHCCUvAZuwqrXzDAorAK7FtHspxNQ0KOtUiwhFY7DgRE4E8pDzqSv5UW3RcYVw7uviBvUU+3CjsYccrYM2oI6YFkxQdGlRUEd13JNfUsJQm6eNY2r+5RvFmFh8zddD9XFSwRUg9j327vaCfiSnE5kQsNaexfGYUqKhCxzXzqysEcUWyPRJzjGkix+wUtKphb7WSfPRRB51KjteUgShpp2LoEHYK30hcR9LEvTnnZtTxkYDqSNThdR5SzRKSTTHIN5VGRzW6U4pJvlMNl5NUIhZxRbwxJhjkzmyj4xqdV/IZDmtRB88jbBlKfWmtCYcSDauOOui4IhzOqUYd6iyimiXy+Y5rwm6O7pTU05igV6CUJdicOFOXwEdCGtW5LQO5JmJRmvsmGNOI+qCLctEOU0pe1ttqropFo62lZeHnve8pvudz38dp8I6PfOsTwE8BP2at/bGbLXcDBhsCjwNvR/zwPwL8Pmvtx06145eIlsG2aNGiRYuXHZZbysEeWWvf+0ILKKX+KfA2RBB1GfiL1trvU0q9D/ggCz/8l+XmCvc4g70Z3lFc4K1RwIUzE86d2SOKS3Z311gZTuj2Z2yek9ysDmrKPCLpZYRRRTEXlpn258S9nCCqqMuQKouoipDx3gpVGfDgF34KazTlPCYeiIoyTEthm/3MM2OAeGPiLxIVGGwZUM9jqlGHeH0i7avKEDOPyPf78rTonvbRlnBlRrnXx1YB1SyW1zoF0epMnh4Bk0fS7qpTSe42NajDaGF71y+w8xB71Fk0EzfKN9EO0lKeeAPjGENNNUkJV+Y+l9aoEVVoJK/bGOw7NWLt8jmVq2MMe7kwL2dTSCJs2xxIU28VWNTqXBhXrSGuMcNKmG5qfZ2tVZZ6qMT20rXtA6j6C7MU5doCWhcFULVr2F6F6FL75vU2MCR7ClVL3W4wtdLMoJSG9ODqeWNFODNE+652OjWuFhaXe14oyCmV1MfWkh9UvUKiAS7vVh90hdlEta9P9TW4rr1Zky/1bNHlzjDKRTykNlHHlf8dDjOIaswkodjrE63MJM84TeQcpqXY5qUFycUDObZx4iMlKqkWbe7y0NsRKjev9dUB5WGX/KBH1M8J0oKwnwvbcszXFoHXLBDWvlm2GSdiyaiFtahOKSrsWlqiUWvPOgmkQTlFKFaVTQ0uCNsPjbD5bonZ7TnlrVN090TpaqbSrs43EXBs07q2ebbWmMLlY8vA2znmuwPitYkoVh3TMzOpQw5W5gstgtMyUGuJ7EwSz5JVLEyRbrloumDBzCNfVys5ZSN55U4pdctOKauGOcWnN4nvO5RGEFlIfdSluD5AhTXR2kxqep1hfzicEw5dm0BlnT6ikjZztYzb5qGPlAWDjHrsWtflEcYoIqcWbuwUO/cdSg7ZSERHhfI9tWzMr8Na2hG6xuzlUYdqHmPyiLCXE69OxQJyfSbRnZVMVN1HidNN1KIB6Lh50qIzqMdiYak7JeX1AaYMmDy3RjKc88Xf+VH+jzf+yRf9vgd45y/9+btllfgXrLX/m/s7Oa1FYoO2DrZFixYtWrz8cFaJt7EO9rZBKfXnlFJfCiybUPynW97OK5HBNljO0X5n/xwHY2FZ1wvNlz9ynZljrNNZTK9bcPlan+uFPFO85eKI6SzmrV/yMforU+pKs7J9SGd1yt7T2+iwJp+mJL2MtJcRRBVhWqIDg44qya9WAU//8usZbIzorUp9n45q4l5G7Z6otVN/mjwi2RiT7w0opgnp+oR0ayRPj67Nlg5reQqtNNOra0RpgU5KaY5chN6BBW1JtkbemLzJg+WHPV/rlu33STfG0ui6CKlmMWEvJ1qVJ2YVGV/XaCpx0Wlq5aLVqdTWlaEfv9LW51TqUSq1e66uspolwvZ7mdQod0rPFhqGUh12KUYd4kFG1eSQ44podebbmEm+2CkUS+3ZoO3VrmmBO96BNBMwkTQYsIG06FM1ngXbwDWD0KJEDucKE0GQWVRlMYnGBEgN8qhp7GClBteAnroccGowfYOaKd84XcZqF45Y08A7RZlR4hoRCEMgrsWdytWLqk4pLGfJcchOY8lRlvLkr5TFlKI+1onUhppxQrXfF0WmXmgJVFxT7fUI12bSFNxdE7bU2HEqeVPnXGWnMfm1ISBOTICwtrBGD3LMNKY6lNxuuDZFJRX1QVeY4yz2al09kCboTQ6/URGruF4wGaA+7KC7hWsrKN8z9TRBJyXh2dExd6XiyU0A8oMe+ahDMpxTTFM6axPCfka0OREltlU+51gddaizWNhVaETV2y/In16XqE1oXDTFLBzgQHKJ2mLGKfUslvpZ1zIPozyrC/oZ1UHXs+SmvZ5OKoL12aKG1iiJEjTK7Vra9tlaWgQGF46oL63K9R1Y1ECud7PXoxp1pJa4aUzgnLoAwtW5nINRSj1OvYtW0M1FBQ+U4w5BXFEXobSGC2t/zE0kxOSiJ2hyww37Npmo98O1qR+vHuSiXK8CCAzB6hy1kkmNfVRjR6ko06cJ5WGX0NXRzq8PSNamEnkzUnNtygAd1VTzmOygR3drhAprwn5OPU34/G/9BH/r0T91qu/6d/2Xb35ZGaxS6quR0pxvAH4F+DjwlSz1hj0NWgbbokWLFi3uCu5VBgscAO8HnkDyun/Lvf4tSqmfP+1G2htsixYtWrS4K7iFG+yKUuoDSqmvepmG9k7gXwOvB74LcYSaWmv/kLX2y067kVd0iPgklkPGzf/vvjDnl58ZshUbLpyZsL4mJTj7B0PW10bsHww5d2aP4aqU8YwOB0RxSVlERLGERyeTLklcEsUlk0mX1z36FKYOONofsnluz4upoqRksHmEMZogqrny+HkABhsj+htj5oc9+ltHKG0oZwm7l84AECUlYVIwH/VIuhlpf07gCs+T/tyHmutMjLlNrQmiCh0aynmMNZpkMANtyfb71GXI8OIu870B1mjCZCEYCtJSjLlrhakCL9Vv+nuquJLwTibh32x3QDbuYGtN1M0xZUC6PkGHEiovDnv0HtiVEhknwClGHaosIl2dokMJy4X9DOXEVYvQtogykvUJ8ytrVIUYuDeis3Q4p7t1JBZyvcI3MWhsAq0VYweTRyJ4cSUaKqp9uE67UgUzTjDTBN3LpV1vXHn7SNVfbNtmEoZXvRKGBYwjzF4XvTp3pTTumbTS2FFKPY1RgRWT9agiWJ2LNZzrnWlzEWhVk2RRUlG7soxYbBu1M/lQsVj0ERjq3f7C5KGxGGwaFwTOMtP1R1VK9m+yiGoWEw3nXkinQuNEPhqVlotQ7UEXPZRjwirq/a6UY7lQojnsULvjqMcpobNMRFsJgRtnbqGs9OF1ZRn1SMLCTRlZsTOQEpIqIBrOpMzGKvKdob8m6llCvDkWk5S09MIhgDqLvHjJVAE6rL2AKlyZoQJnqZhF1LOYw6e2OfPWJ0SEVWnqwy7VJPGinyAtsa4ZQdjPJNyZSfhbaSPGCKFBpwUmi4m2xiJCcqmBoFegUpkTubAUwcbUl7LYUSqh2H4uPWqtwsxiWcYo37tWhUbK8AzYcerPD4WU2ehuiRlLGFaFhqBTYI1m8uQWYTcnHojYMlyZu7IYCfPbWknjgSZs70rs7DyiHqXSFMVZqKp+sTC5aZpk5KE30LGV67tcafTGFKpgcd0ddBflV1VAOJxLmmlHUhDx+pSgl1OPOqhIDG6qUerXqbOIL/yrv8x3vf7PnuKbHX7Hx/7M3RI5/QoSJn4L4vz0SeDAWnuqG31bptOiRYsWLV522JfHaOKl4oPW2o8g/sN/zFr7G5VSm6dd+VXFYG+G79ne8EKn5ne3kx8TQW1tjNncPPDrNKz1aNRnc/OAyaTrWe9jn7iPtUHBmx69xM9/9GHWBgW9bsG5M3scjfqcu2+HtJtRFRGjwwFHIzH2fvjRJxlsjAgCw7Wnz5J0MqbjHrNJl/XtfVa3D6jymEufusjWuevEaUGRxUzHPc+U485CJa4DQ12GpIMZOqoJ44poMPdF5GFT5uBYVDmLGV9b43BnlY3zu8S9XJjmigheGrEEQNTPqbOIIK6o5jE6kvfi4RxrNDqqhIEElvKwS3HUlde6BWE/o3aGHOWoQ9jLveQ/Xpl5mzwVSaG8NYqwL2OtXRmF7haYuRTE11lEOY+p8gitjQi3yoCoK2w0GswJUjEWSR/Yoz7sYgoRZJUHYlSgtBEm5QQ42jE7EAMDa6V8QYfSdKB5TcxFYi/aqGbCcEylhZ1ri44qopW5a+MViTBlmlDs90BbseHr5Z716LgWC08namns6ho2RS2Whmhpt1fPpS1cvD71kYKm/EpOnBXhirYSHXFm8Mna1NvlNWYIcuy1H09zLtF4S8dqkorAzUVJTBmQ7fcJ00JMIcKaeGuMCmuyZ9dle86KMVybYvKIYq9POUnobI2FDZYhxWFXTFu6OWFaUjXCul5OVYR0t0Zi0rI6JXBCoMbS0+bOdrAIHetfmMcD3oS/MdivjrrClmthSw3rbtq1xRtjiaCUItSqs5h4bSKRElem1gipgrSUa3SYYS1UR12CXi5lRFZ5ZoqyEvkwYmkpJh+u3eJRsmgvOMil3Z1G2kxmrmxpEkkLRMeWdbf0JiH1ftefq3oWy3ac2Ctcn6L6OXYsDSVUIp8rDJiDrgiYKi3X99K8Ni0Fm1aCjaWs7uVSWmUV1Jpqty9mHVksZYnlomzPlCHJmSMv/rJlgAoNs8vrzA97rDy4Iy3r3D5nl9fJ9vuowPKlf/vn+esP/U+n+g7/mo//qbvCYJehlPoCa+2v3Mo6LYNt0aJFixZ3BebeZ7Aet3pzhdcIgwXJxzZo8rSNYcWHy/rY6++3DwBS7rMVG64XmidV6c0t1tdGZFnCbJ5w/8WrlIWwtb/zi7K9Rx7c4+ce3+JdX/QkeRHx2Cfu48u+6AmiuGQ26XI06vPQw5cA2Di3R9zLsLVmdtSjtz5Ga8PT//V1VFXAlee2OXffDp/+9EXPkAEu3n+F3nDKYOOIbNLl8Poqq1uHACTdTBhsXGFqjQ4MppbcbfPa7KjPfJJS1wEf+9U3cP/Fq2ye3WM66nHmgaukgxlhWhKmhWeg4Mzm0xJTBMz2B6SDOdFAcn7lqEMxFVYU9zKCtCQaStMBU0iT9GqSkh11CeMKFRiCtKQYSamBrbW0zNIWU0n5hg6N5MrAPSGL9aDJI8n3TlLCbk4QVwTdgsMnztLfPsIYYRY6NJSzmHRz7JlIOZLmC3UWETYMKKylAL/SPkdajKTNV+Rae6WbYymB2lkBIF6dUmexsF6gdPaSVSZlSEEqJVYqrL0RQrg2xcwjZpc3MLWme98BQacgvz4kO+j58xMP5wSNSXqtqaYJ+bhLMU3QgaG3dQRA5Eq4lLZUM5ePX5tiyuDYeOrSNdl2ufpmXM1cmjIg2xtI7jQ0hF0p+Wn2m6xMhZVpgzWauggpZgmrD+2AslQziQZV08QzX7SlmiYYl7eOmzz8LJHzCzLWPJJcbBYROwMIk7nWeO6aMZUmiCuilRkqlvIl46wabRX4SILulNSuGYY1Gh3WhOcPpfQkF1MPwJl0lESbE2+LaPa65FdXKEYddCjnL9kcS0vAuKY+6C6sIwFTBYQrcn2rpJL8tsXbZNItvbWk6rloQxFg56ErG7Ji1OGMYlRa+xaNdr9DcWkdlJTR6NW5NOpw89rAxmJD2liGoi1kwcIGtSkd6lTCmMeR/J9JwxMCi52HCybeK7GZtG9UcU192PHm/2YWUxz0qbOIzrkDsT4sA7LnVrFVQDmL5boKjER04opiZ8jo8gaBywl3Nsbuc5fzBf/rx/jfH/xzL/i93eB3fvJPnMoq8V5Dy2BbtGjRosXLjtttlXgv4jXDYJexzGYBvnK9ptct+KadvRsu96H48rF1HrIRj2xkHIxjrheat1wUZfLrXy9tB688t83KcOKZ6nB9xM7lba48tw3Auft2KIuITjfj+s46/8MnS95RXOAbPv8aWZZw7r4dzj54hfmohw5qnn1S1MiNqnl3d803Omjyvavb0rg57uTeEjKfpSTdjNH+kE5vTnc4I5+5PGBQk/ZFGTo7ElZcO1Yxn3YYHw4YrI7JZim9wZS1s/tYoz2DaZDPUnavbJB2M7bvv0Zndcp0b4AODIVTIld5zMYD1wAoHNMppsKuxnsrrF+4jnaNDCLHRoup2L+FaYmpNdZoslFHbC/TUthMPyPsZ5SjDrPrK16dna5M+X/be/sgOc77vvPzTM/09Ly/7S52gcWbRQLUGyKeJSUW6+LLSS7KSmwlvJSLjmzLtkTakRzblzufRDJnyXIkq0op28k5ckJbtlwlxT6XQpUsnx1aVGzfHUs6STFdlGSSEGGAwAIL7O687Lz2zHTPc3/0PA96BrO7swD2BYvnw9ri7kxP99M9s+j9/l6+P78fxU65RGwfy+nRbzpajcaSPZorOexkl147jhXzicZ7tCsZEvngtZnFcjCwvBfViqu9FlRIKoXcXU+ROb4a2Ny5NpYTDL4W1iAY9h3z8JqBmYGqtGxfKeihDZYdKD2/FyVebBKxPdqXi3i96DA6EKijqNPH70exYp5WgX4vUG7Sj9B3bayYR2qxTMT2A7u7mIfsR/Faw+vddLRJyqAfJZoKcuzSjxD+J6A/fH/UcVXFqteK43VsqpdLdFvBZyiecskfLgd52ciA6HDwd3stQyzZxevaeG6M9nqK3ELw+ZG+IJbs4veDinGljGOZjs6F9uoJosnrtQbRRC8w3IgEVp9eOx4YuUQGxNLd4PFh3YFS58GHXGI5fbprGaKJXjCg3va0DaSIDuheLgCBhaMV94gke1iJXpBj9AXu8LXRVFfnxSNDi0GvnhixKOw1gkHv6SOVoCJ7AFamG1hO5juIXDcwTokQ2HFaEpn0kbYMLDp7wcAJLPCLPl42+D2LVQfggfCHz0eC7aUdvAYrsPiUcYi0BTI+HBvXjIAb0WMjpZDI2HDmgwfWqj38JbZ03pdeUBMh2zbSjwTVz8r8YqhyIRhW0itngs/xsBZCmZq413K6LkJdh0E/qgcbRLMufsvmdR88y8cXP8A0/NC59+95DvZmMArWYDAYDLuPvLNysDfDLSnY4TDbDwOvJhhi+43Qc48B7yEYSf2zUsqnt9rfbinYjfjkXImla2k+Jl4ZeXxc8Z6UMZ2TBfha3+ekDPKwvxU/zyfSC6SSPV71qkucOxeMIlS9tvVahm4vRjrd1r22M/OBcl6vZHU+t9+LsXDsKl3XJpHqkMo3g9yXH6FTDwZzd12buNOjVU8RT7jk52r0uzGSuRbrK3kGfrC+3FyVgR/B60cZeBbJXAuvF6XXidPvxsiU6jTKWeIpF9vpafXX79g6f+s2k8STLs1qhojlkynV8ftR+t0YdqJLLNGjVQn+ok0VG/TVsOdED78X1Xm4iDUgPhygoPp31y+X9LkBRGOefm2/Y9OqpcnN1YhnOnQbCQZ+BL8f1Qo95vSIJbt0aimyC1Xa5QxWzCOW7BKJDujWA2Whqo77rk2i0NTDu5UC9d0Yfi9Kp5aiUc4y8C3ShQYiMsDJdrBiHp4bw+9HdV72yotHyc/VSM+u6xy3Uod+L6q3F9aAViVDMtcinukQsQb0XRu3nqBRzhFPumRm1rGHxurSj2gLSq8bIz6MNvj9KE6hpfcfdXrYuQ5SwvqFOfxelIg1wBtWgyfyLTq1FIl8UCneWM3pwReZmSCP23eD9zl1qKarewHcSjoY40jQhxrPBqqk34zjdQPVHLEGuk+6vZ5i4FtkZms0VvNE4z0ys+tYMY9+O67zwLFkl+iwCrhVzmCnurj1BLFEMKQ96vQDm9Bh5bp6nfpMxDKdYICGF1wjp9TASvQC+89ulPaVAhFrcH0QwLAOQcrrlfKxZI9+2yahRlOG8JqOrpSOpLr0V7J0ruaIRAfEi02dh5UDgR9S00Skvn6+G9M94M7cejAApGMTGY70i9ietiHtVdOBxWiyh1C2oSp3G/eQmaAaWcakVqd4wTAK0Q0sOkUninStob0oyFQfmRowcIZqtiUQrSjCtYKRln2BrCYYtOyg2nloEanqECLJwM6zX07rMYhqcDoyGBzhrSd0j/7As3T9QjTVxV3J0hjavTrFpq4et7OdYCxfzOPUTy3xsSOP3XD9J/HD5//5XalgvwU8BPzH8INCiNcADwOvBQ4DzwghTkkp/Vs8nsFgMBgOCHdAH+wtcUs3WCnlCwBC3HCR3gn8wXC0z3khxMsEVlPbnkZgMBgMhoPJQb/B3pYiJyHEXwD/qwoRCyF+A/iqlPIzw58/BfyplPJzE177KPAogCD/3WlnuqT3TqHsFsfDwsCIDeP4axRvjlkj7T2qGAoY+Vm1/qjQsvp+1h5QyPQ4emQNgNm5ClG7T2WlCEAy3Wb+xDKWFRSWtGppBr5F17U5//IxAByny+LxK0RjPl3XZnkpsGRMp9vMzJd58Vv34Dhd4nafZDoopJlbXKHfjemCqpfPX59OdOpEmZP3XKS0UNZh3NpKQRdAJdIunaajjTFq5Twxu6/NNuZPXgkKbIZhSNXuMegHtnCxZI/BcILJ1bNH6Lk2qVwrmFFpDbBiHm4zQSTqk8o3A5tBa4DnxmisBS0zau7v1QsLOEmXdK5Fp+mQyrUoHlvBznYCE42BGGnN6Q/Dx3IQtIEMvAgR26czbFnpt+O4w6Ier2uTLtZ16NHJtRCCYJbwao5OPUUi2yIa83TIO5Vv0m052hRETVpS84g9NxaEXm2PxnJQcNN3bWLDcJyTawXtRZ6FZXuIqE97NUc808ZzbZqrOZrVIDRfXFwN7C6tAVbM1/OOo/Ee3WYCK+aTOlTT591tBJNzVJtY9XKJ2kqwBq8X4/A9Szqkb9ke7XKGZKkRtEXFPdy1DNXLJTr1FOuVoAAslWlhOz1Kx1aDaTIEE6Y6tRS9TlwX1rnN4Lqrort0IbAqtWJBm1KjHLyvmdI68ZSL34/qUO/6Sj74Xci2dSpDtTfFnB52qhukRNwYTrGJne3oQjWvHbQNdWopnGxH23KqtrFovI+d6QSh3raN59rE8y1ihTZ+y6Zy9rBeR+7YGtFE8NlFCqLpYTFYKx5MCGoEYW8gOHbXxu9bJPIt3ZYE6PWpFqZossugG1hv9oafHTvtBpO1Ss2gyKlvBdON1LzaQRC2JSL1pKZ+NanTDE6uPSz66tFZyZGcrwUTk4a2m2JoYanmwUovwsALpkT11hP4vSjdZkJ/7lULWsT2qJ+fIzoMeftujHYlg2V7xNOdII3UjuvPYrLU0C1Xb/jo83xk/omJ/6aO86MXHz2YbTpCiGeA+QlPPSGl/MJGL5vw2MQ7uZTySeBJCHKwW63HYDAYDHc+UsLAN206W+/kRgX7GICU8leGPz8NfFhKuWmIeK+LnBSPy+N8re/foFjD6nYjNTvOuLpVtoqbsXQtPXL88PHe1lvUbUUQFE8V5ypUVop0ezEq1SzPXcryW/HzPC6Pjww4SKfbrK0VaHfiuqVIWTBWrpZYXSkyO1fB8yzOnTvK6dMXyBTqut2m1UiRK9ZZu1rSRVjxpEvlagmAeMIlGvOJJ10GvqWHDKi5urbTY32okFTxlrKCBJg/sczcfUtIz9KWjaoNRUQGWgVLGShOpQiVAf/Aj+gWmG4zML1QRWFe3yJTqtNtOcTi/aC96GqJfKlGKtciFu8HbT2RgW4NUsezc23kQOC14/RaDrUrJSKWH5gYxDxatTTJbJv07Dqtcga3mSSZa5IqNXRhTeNqYWSf4VaiXsuh20iQLAYqrt+O6wItVeSkWoo69STpUoPyxVmS2TaJfEurvm4jQXs9je9FiKdcBp5Ff2iTqeYVe/0o3ZYTRAKsgTb4gEA92qluYLE5bMfwOjadWko/36ql8bp2UOg2s46wJPGh1SYMBzgM1xK0F1m6WE4VdjWrGby+RSLt4qTbxBI9rJiP9AWDQUQPsIBA4arzURGSgWfRWk9hOz06rQReL4bnWeSKdbquTX6uimUNSORbuPUE1atB9CeVa9FaD86lMF8BIGp7uiAsnhoamgwVt1LFAz9Cq5bGig4oHb+G34/i9y069SSWNSA7X9WKWZmzeK5N1OnRWs1x9fwC+bkq6VKDeC4oUOu340SGUQbVatQpZ3TxV7jAa9C3dKHX0kvHiNp90rmWbn1rrubIHSnr6IWIDGit5rQFqhDXfzdUpKa5ksNOBYWB6jNiJ7rEUy7r14rEk65+T0VkQDzl6tar8sVZUvkmzrAdyk65tMuZ6+1ipQaReF+3ToVb5gY9Sxtl/J2PfJMPz/7vk/4JvIEfv/LeO7LIaafG1f0R8LAQIi6EOAncC3xth45lMBgMhjsMSdCmM83Xncqttun8E+D/AGaBGvDXUsoHh889Afwk4AE/L6X80632t18ULNxoo6hQLTqwcU52O8eYJq8L180wJrURQaC6T50o4zhdZucqdNoOzWaQY4sPDSq6vRgLi9dI51osvxJE/VVbUHGuovdlWT6202Pl8hwvvBTkdZ+uWHqtn5wrsXAoaC16+fwC95xcJpluE4365GdrWt3ZwzziwI/Q68S16ogN2xO+8pffzcKhMgvHrhKxfD0CMFesE7F8rZwTaZeI5dNtO6xXsqQywV/mttOjuhooYifpkkh19L6ddEfn8lr1FKsrRZ2Djlg+1rCFot+NaTWt2pqU2m2Us1o1dTsOxfkydqJLdqFKf6jsGuUcubmqblly0h2dP1XtLxDkUmPJHr2hfWG/HddqLZboYQ/NFyBQBPXlAt7wZ6WSlSrtth0S2RaNcpZux2F1pcji8SsU5ivEUy5uI4nvR7CsAZlDVeL5NoNelMZyAbflsLYUGJ6ksi0i1vXPdzLb1oo/U1rXx4dAAdupbjBKLTqgU0vRqSdxUi4DPxKYbwyNSoQIFBgEBgPCGgQWmr6gP3xPY04PYUl9LarLJbqujdeLURy2rVWulnRUxBsOafB9i5kjq2QXqroNajCIjLT3KCW1frWg1W5+rkazmiFdaOjWpWY1Q6ueIpVtMfeqK7QrGZrVDC9+654RK1Mr5pHItxj4EdaXi7o2QBmldF2bdK5FbTWv1WU03iMa84glesFrvYiOqqhIicorr68UyM1VyRyuwEDQuBp8pnuuTbrUIFFo0ms6Ol8/8CK0K4GZi2oXU+1Xqq3O60eprRTIFutatdtODys6oNN0KMxX6HXiJHMtYsmuNgERliRRaAZGJn6ExkouGJNXzbBeyXLitedxci367TitWppuy2H+1GXsXBuvbePWUrRqaf27rz7TVswjNmwB7Ls2iXyLN/36V/nFmV8c/6dsIu+5+p47UsHeahXx54HPb/DcRwnm5xkMBoPBcAOmingX2U8KVhG2S5z0+KTn9nL/ShU/Lo9TyPSoNuyJed+wAlXb3HNyWdsxZvINnSOtlfM0m0nSw4rj8DD6RNLF8yythJVqnp2r8FfPnQLgbNnRxhxn7ruih9x/1+vO6QpUNQTh7IXSSLV1OIdcKK4TjfpcurhALtskmW5rNQvQ7Th4nkUq06JWzpNIunTajlatnVYCt+3Q78W4eGmeZKLL2Qsl3nQmiAgU5ypki3XqlSznXz7G0WPLdNpOYAayUNZqN+70tAEFQK8Tx050tVp1mwnqlSyVlSIxu8/ckRXyCxVtetBzbTr1FOlCg5jT08YZIjLQNpeFxTW6jQTe0Dhi4EdYuzxLfBgB6DQdZo+taNP/biOpc8NKxasq85XLc2TyDfJzVaIxT6tcK+Zpm8zMbI1+xyY9u45le7rCOFCaA9rlDO31FHaiqyukB16gKuuVLG7b0VGEnmvj+xZeL6YVXe5QBWFJovEe/XYcYUk6tZSuStfvYcvRlezZfIOZxRWiMY9GOUe60MD3IzTKWXzfIp1rEU+6WnWrz1G3F2N2rqKVcPZQjfq1vI6qrK8USGRbOCkXYQ2wk12qSzO01lN0Ow6ZQl3nduu1DMW5Cpblk0i7uq5AoRS820zgpDvEMx0aqzkS2fZIbnswzClHIgP9vZ28/pmpXy3QridJZtvkj6/guzHihRa9Worq5RLpUgNrGBXoNhJaRQpLEnN6eL0o3UZC57n73RgD38L3IrrmACAW7+Ok2zTKOR0FicZ8IpZPMtumvBzUU2SLdZx0h8KrriL9CL16Qo+6VEo4d6jCYBChtlzUFd1OpkMk3tc2nspgZty8pVnN8P1f+AJPFD7ENPzU6k/cfQrWYDAYDIabxSjYXWQ/Ktgwk9RmuLJYWScqxvO344StFsO9t+OKdaOq5u2sWRGuRg734I6va/FQUHWqLB7VcPhqJae3q1Sz+vtW2+ZsOfgredYe8DHxij7GqZKrFXQy0eXosWUArQ7nFle4/LdHWFsr6P7c7lARq7GAEFRXAyweavLcpaw+llLqi4eanD59gdWVou7xTWVatBop+r2YHl5QreSYnasQT7gk0i611Tyd4V/4L7x0jHtOLuvzSqbbunJ6Zr5MprTO1fOHuXRxgZmZKvlSjcRwnJ7vRbCiA61yGuXsSE+wwhue2+qwt7lQXNdRgfkTy0G/pBfRlb8qf12Yr+D1o3hdm/zhMn7forZc1PnkZC7YXtkBttfTNNdTeL0YnaFyV3n4RCqoAFU5OQhydI1qllS2xdrVkh6vCIG6jzs9li/Ok803mD95RecylQWnyg17XZuL3zlKNt8glW3Rqqeo1zL6c5Qp1fXx3GaCgW9RW82TyrZIZIOIxMCziER91pbmyM/WyB2qsH6tSDLXxLI9OvUkXtfWuU6lqr1uoN7WrpZoNpO6/uDEfReIxfv0uzFi8b5W91Z0QG01T72WYeHYVRLZFpY1wPcjXDp7jH4vpkdE5rJNfU6qZkBVLWdm14lYA1rljO7bVcq1sZonmWtqdanUpO9FAmvJUhCFiKdcBoMIkcgAYUlqV0okc00S+ZaOZkRtT1cHK0UJMHtsBa8XxW0mcdJtoran87ODvqX323dtGuWsPp6TcnFbDt2WQ3W1wPyJZf2+RKI+tZUC+bkquflqYHnoxnAraaJOn+ZqDifTpj8ch2jFvGCAxfA4lu3hZDo6by/9iFbqK5fn+NGv/g4fzP8S0/C+8rsPZh+swWAwGAw7gRxMvend2wd7u9jvClYxnh/dLI8aVozjjA9+V+5OgHZ1gutKeFwhAxMrirda+2br3Ox1So2qiuJPpK+7PRUygWpT+daHFgOFpFSncrcKK3HVp5tMdDl5z0U9uADQKhSuj+lrNpNaNScTXWZmqvoxlad13evj1hynq/PGEIz5m5mpjrhMRe0+luXT7ThaUfd7MZrNJIVioCyU4q3XMnz9+eN871teYG5xBScdmPY3K1mWX5mn2Uxqxb1wqMyRk5eD9cf7rAwrd/Xakq4+307b0flidVyVS1SOXKpSudt2aK6nWF46xKXLM1QbNm868wrZfAPPs7TiBHRld9TuE3d6ujJb5afDCrrdTGpXL3W+qytFXDfOajlDKtkbOadGNUvU7utBFF4/imUNKC+XyBbrZGbW8ftR3Jaj+2YvvHgCgPV6mpmZKpl8g2yxzsC3SOaauM3ESK5QqcS15aDv+sSrL2iVGo33dBW151n6/cwU6iSzbd0b3OvEWVmaI5VpjVQjtxqpkccSaVfn2L1eTA/P8P0IVy8s6PGS6pzhet8soAdwKDXq9aP6MaWc40kXO9HFyXZ0X7fqQ/aGQyaitkd7PUW37eh8qYoQDHyLTtMhGvNp1VMcOn4VO+XSqQfveW6+qgc9qP5eVR0cHzqZKaWphlCM95g3K1lqq3niCVfno2PxPvVKlrjTo7BQJjW7TreRJOb0cBsJXQHvuTHWV/K6ZxmCUZgq6gBgxXzcoXvaA5/6Cz6Q+QjT8DO1HzM5WIPBYDAYpuPO7nGdBnODNRgMBsOuIyX4g4N9gzUh4ltko/Dw+DbbtVacdvtHuid1KHm1F+G34ue3dRyFCj+Hw9ThxxVqEIHrxjl7oTTynGqpSafbIyYX3V5M/79SzfLUUhAi+pF7awB85jt5HlrskEx0cZyuDgO32jZPV64fX1lNPl2xeHPM4mPiFR7pnuSBU6t6m/CawuHzt/UWee/rr+kQ8mo5MMivNmxOnSizcHhFh2VdN87RY8usrhSpVLM6HJ0IFSoBvPTSCZaupTlz3xXidp+Y3WdtLTAJUIVZxUKd5188rIvGioW6Pj8VPlfX/VTJZbbU4Nmzs9x/tK6vhyrYcpIu2WJdz/MNzwcOhzZ938JtO0SjPplCEIJdu1oik2/odhMVBlStJ93hQIN4ysWyBvS7Mfrd2EjRkyqSChe3nXnDi0BgABF3enh9C9vpkZur6bYSYUma5cxI8cyls4GBSczuj4Sx1WzjRNrVRUCADqVfvDSvr6Nq21Jh4fYwVBoO3XZbDvmFCp168oYwq2r7sYatMr4fIZFt4/eiep3KWrO1nsL3rRvadWwnCFWrYjHft7RVoyqUUqhzXV0pcunyDLOlBifvuUg618JJt4lYA12AlMwG4fraSp5UroWd6Oqwrzq/wSCi7RrV5yCedOm2Hby+he9bNGoZ8qUarUaK+RPLOMPXRp2g0EtZdcpBYPUohtdC2S7Wlot0Wgn9uWsr04pEUEAVtT3dFpTMtYg6fXqtuG7JgcAWVX0ei/NlsodqiMiA+//NN/iXyV9mGv5l80dMiNhgMBgMhmkxbTq7yJ2oYMNsR6nuFErRhluEtrumaUwubqVYShVAvW+lfMPrVMHXqRNlVssZjh5Z48vPL2qjCqWg0+m2Ln46d+4oS9fSWiUmE11y2eD7P/nGSU6Vgr/az5adGwrHwueort2pE2XanThL19KcOlHWxVSuG2dmpgoEBVO5bHPEcEOhWn4UqhArOfyrX7X3QGCOoV6jzDqS6TbtZpKvP39c72O1F+GBU6v6+Imkq9Vqo5bR7SSOExxDFS6pgqKZ+TKtegpvaA5x5FWXtf0dQK5YZ72Spd+LsbZWYOHwCv1eTL8O0EVUqoVKFULF7T7ZfDCoQLWwrFyeo9+L6VapTKmulZZq/VBFSuo8IDA4UKMHva6tFZkqagqrR2XysL5SoFVPMbO4AsDVCwssX5kjl23yXa87R7flaNtNQA8JOP/yMR25UO03XdfWKlW1SiXyLeQgGHHXbTusDc0YVOGTWn962D6jlKxl+RTmK8hBhPJyiUYtw9yRFZLZNk6mjdtIcu2VeVZXiiwsXtMmIv1ujOWL8xTnKqRzLX08YMRERbUvqdab8DlFo75ue1JFZpWrJV0Qlp+rUlspUFkpcuK+Cwx8i3jS1aYV1atFojGf4mIQHVIDG9xmQqv5uNMjkW3pEZJyEBkZjQiB2cnahUM0qlniCZe5k1d1Udbf/70v83POv2YafqH9LqNgDQaDwWCYBimDr4OMUbC3mf2gYtU64Hob0U6saSMTi1vZjxqwcFLGuP9onaVrad505hVidl/n3wCeu5TVueIHi8Ffy+F8rbKLVDaIgLZiVEpXjQUMt0QtHmqydC2tlbIa/6cMLVQbkjLpgMDsQrUbASN55PAxAE6VXI4eWdN52XB7kVLNhUyP2VJjJA/cattUGzarvYjeD8DRI2sUiuukMi1832J56dBIDjycc1bbtptJrexTyZ42CXng1Cqf+U5eRwqUdWa+VBsZ0tDvxrCiA5ZfmefXv3ISgIcWOzoveu7c0RF7S6X0AN3+oqz8lBGGan9RRh21lYJuLYLrbUEqX+k2k3SaDqlcSw92UO0syVwLYQ3we1GdC1Q5yXSuRb8b07nixvB9Unaf4Rau/GywzlY9RXG+TCze17lO1UK0fPH6ZzI2zMOrlqfCbJWea1OYr5BdqDLwIjRXc9qIX+XMAZZeOazrFGbnKjrvDYxcO9+39HVqrqeorBTJ5hvkZ2vBNkPrSGX8odqdVF6223GYWVxhbWmOeMLVQz0U/V6M4lyFmSOrVK8W9TVL5pqUL89QmK8QsQb0XBuva9NpOiMDMTptR+d81XWYP7GMZQ30IIVctklxrsIP/Mnn+Bl7Orv6x7r/7I5UsDs1rs5gMBgMhk1RKnarLyAnhHhSCPEDe7zkbWEU7A5xu9Td7VjHTqrYnWCSQcekc9goD6yYdL7KdlIxbvARNg4BRuwkldLdzLbyke7JEbMQpVgBXXmtbCTDa1CqGoLq6V9oLuvzUc+Pq2EI1LOqHv/kXIljR6/qSmZltBEezqDyosryUuWVVYWwMtRQ36u8azi/G7f7+ufF41e0sX94RKLi0uUZfS5qzKGq1L7vdS/r4QQqr6eGp6tcMMDC4RXmTywTjXksfecon/uL1/LWM0sUiutUKzkq1SzHjl7VJh3KxEOp304roVWfMq1IJN2R81SElWy1kiOdbmuLTVXtrAYaRGO+HuunFCOg855ryyUKs1WqqwXOnTvK6dMXtGJN5Vq6GrzXieOkO3q0W7MaVLh7fWtkaEUi6TKzuKJzyt2Oo/Os3ZZDplRn4AfD6fuuTczpcfnsUR3VyJdqRGM+yxfntQWoysGroRnKVvTipXnOvOFFbWrRaTtk8g0qK0WWr5U4ffoCUbuP23Z4/puvYrbU0NGhZKLLwuEVnKSrh2s0m0kWj1/RBhQ91+b7v/h53hf92MTfo3H+Vf+H70gFa3KwBoPBYNgT9o+82xmMgt1FbteIu5s57maWjePsB6U7Sa3C9Rzt+NCCsAKddv+Thh1MUwWteoOV6gzng1Xu99SJsh69F87Z3n+0fkMvrOrXDZ+zqmjeyD5T9QM/Yy/xSPfkyECF8fynUpXKWvFrfZ/3f/eSrlJVRvsqT6n6WZdeOaxzuCqvHO4JLs6Xufy3R7Tag0ARqwrkfi/G8rWSHo0Ys/u6Gttxuvz2Nw/p9/Pnv+e8Hvag8sRqTJzq6wWYWSjrnKJSX07S1bnISxcXdC+06i1+9emLxOw+584d1cMrIKh4BnSVdJio3adRy4wMPFC9yOFBCbXVPPnZms4l12uZkW3DLC8dAtBRBRUFSKfbenyispBUxw5XA68tzXHp4sJIPh2g3UyycOyqzrFeurigB2pkCnVyczU9CEDllCGwIw3bgar3LlesE0+61CtZvv3Ne2m1gwrso0fWmJ2rkCnUqa4WaDeTOu+sogb/z1/er7cFdH+4yssuX5nj7IUShUyPj6z9Ej81pYL9kGcUrMFgMBgMUyERSEwf7K5x0BVsmN1WszfjJhVG5SqndYq6HWy05rCK3GrU32Y80g0qYMNKMbzfMCqfqip5VYUzwKkTgUJrd+IkE139f4Bnz85OVMhhRa5Q+dXzon+Deg9vpyqJHzi1qiuPw2t+sOiP5MSKhTqXLs8A6OEMauSf6vtVhv5KrVQbNmfuu6JzkEpJxoc5tPVKVivC8DCGQnGd5StzOl+r1Go63eaFl46RSvb0tQFGxhOq3uZqJTfSx9vuxHnuUpbfip/Xal2NRlQ8cGpV9z6r/uHFQ01abZujR9Z0r67KEysVqY6repAB7Va1cKjM158/TiHT0+sOV3orF7Bnz87qnLAaj7h8ZY52J06rbTNbamjVCYy4mSlU5bbi1acvkhkq7eWlQ1SqWV77+u+MDG1Qyl7lTJWLGlzv0y7OVWjUMiN53Kjdx+vFuHRxQV//4lxFD0toVLN4nkWuGBj9qzGMtdU8L710gucuZXng1CpHjy1rBy5VTa3GAipXLUDvLxr1R8YVPvC7/5X3WtMp2F/2HzYK1mAwGAyGaZDAYP/oux3B3GANBoPBsCcc8PurCRHvB3YrXHyzrTrTtMfsJJsdbzw0vFkR13ZafMKFU+HXjxdVhbcfH7rwtt6iHmjw7NlZgJFiJBgtkAqHCasNW4chw6jwsCI86CAcblUtQSqE/on0AnDdLvJj4hXdshQuHFPnp4YNhPcRbvlS5xVmZqaqzUBU2PpNZ17RBh9n7ruiC63Cph3q+OPXeDx0r8La4VC+uh4qZF/I9Hj16Yu6YEoVED21lBgpTguHeVUIWK371IkyuWyT9Xp6pGBLhY5VqFiFn8OFQsrEX9lo9nsxvv78cW2WEg5LN5vJG66HautSod58qaZn1S5fnGf5WukGQ5NioT4yVCObbxC1+ywvHdLzfAFd7FWt5Pjy84u8443nidl9MvkGiVSHeMplbTi3eHWlqM1Qvud7/5tuo0rnAivM1nqKWjmvQ+uzC8Hn0PctKsM5w8vXSrTaNvecXB6ZNayu0ftf+jV+XEwXIv64NCFig8FgMBimZv/Iu53BKNh9xk6r2WnV50ZFQ+MtPzeriMeZdk23MhZwu4VQt3Ku42pYKc3VcmZElSpLRqVkwo/BaGuN2heMthYpq0hVgKUK0T45V6JYqGsVo4py1Cg9xVNLCR5a7GgTCLhuihFWd+ECqLCdpXouvP7wdmrdStUrxarsFcMqTu0jrNSV4p6EGlf47NnZEcUbVsAqsgA3FsWp4j11HKVe1XW4dHlGF3+FC8QgGCrx7NlZfb0fl8dHlLk677eeWeL5Fw/raMHioeaIMUY06usiIIBLFxdod+LaNER9n0i6eliDMtgIX/twkdybYxZn7rsyYryhhj0UZquk8k3Of/u7dNETMFLklBm2eiWzbS68cAJgpFAK0AVjyuYz3B6mrDsbtYw+B7g+ZrDfi/FDz36aH5tSwX7CKFiDwWAwGKbH33qTO5pbUrBCiE8APwD0gHPAT0gpa8PnHgPeQ3ANf1ZK+fRW+zMKdpSdVLNbGU5MqxSnzXmOv278cTVAfRo2U6LbNdKY5hqH7RV36n14sOiP5GaXrqX1iDpA50JVnjaV7Oltxtt61H7HzTjUUIKwqlXD68dzsGGUEgRuaNMK52XhRkUIo4oW0FaRk3LiGxmMjOdk1bYPFn095GF8HeOWmAqlQMOGHxAo0tVyRls7Pi6P85Y3vjxigKHGxa2tFbShxbiNpVLC4aEPKm+q2nzCOXB1fvcfreucJcDL5xf0Z+KppcTINVC5fLXm2VJDq8RW2+bpisVDix1abZtUssdzl7I6r66iGe948Bs6j7p8raSvR9gY5OKleb0P9X917ZT6Xl0pjoyPVDaXR48tk5+t4XsRqquB7WUq06LbcfA8i3/855/lXUynYH+Nh18G/hz4opTyi1O9aB9wq2b/XwJeJ6U8A5wFHgMQQrwGeBh4LfB24JNCCGvDvRgMBoPhrmMw5RewLqV89E66ucJtzMEKIf4J8E+llO8aqleklL8yfO5p4MNSyq9stg+jYDfmZowUdpJp8p3jlbXjlbcwej7hYfE3Y4qxnddMMs4YXzNww1pu5n24mZzz+HHC1omAzrON5xyBG/KOCpXjDKvVhxY72sQhfF3gugINDye4GVvK8DkpK8mw2pv0fm9Wuf5I96TO/T61lNB2kWrNYRtJCJSoQplnhHOHKres1LwyqFCPhXPFaptTJ8rMzFQBbtiXyoWfF30eWuxodatepyqMm80kcbs/oh6V+pxkSDJufqIeDxuFqOjEzEyVF146dkNuNnxNP5FeGDH+CEc0FOHPioqeKLWcTHRxnC6zcxVWV4ojuf4z913RP4crrZVV4tf6Ps8OPsTDUyrYf8edmYO9nePqfhL40+H3R4BLoeeWho8ZDAaDwRAYTUz5daeypYIVQjwDzE946gkp5ReG2zwBvBF4SEophRD/HviKlPIzw+c/BfyJlPI/T9j/o8CjAIL8d6edD9zK+dwV7Bc1u1Ev6a2uK9xrup2K50l/eU/abtLj4b7KsNIOD4AftzzcLKccZrMe3u1UTz8uj9+wPqXewgPjw32aYQWjhrSPV8UqNdZsJvny84sj112pRaXC1DVRKjmcQ1RKeqNIRVghj/e4bvZ+qf0rq8pJlbrj4waV6nTdOD/+SlPvL1xlqywvgRFLw/Bg+3GFPf7ehnOuk6wyVSX2q09f5OKl+ZG+Z/X6+4/Wee5SVh9P5YjHLTDDldjhfCxc769W/b7jj4dV9Djh2gel9tV7pHL2qv8X0H21Z8uO/myE89pK6YevWThipIZh/PRLv8Y/nVLB/uYdqmC3rCKWUr5ts+eFEO8G/hHwVnn9br0EHA1ttghc2WD/TwJPQhAinmLNBoPBYLjDUQr2IHOrVcRvB34V+F4p5Wro8dcC/wl4M3AY+DJwr5Ry06psk4PdPtvJQe6UA9NOKepJuctw3m4jY361HTCSiwznJsdfM2nAu0IpR7jef6qqflUeCtA5tHH3pfDxNlO8m12/8CD38DmqylMY7TtVzytnINXXGlaN47lKGM3LjW+vcpPqNeMVx+G+03HVt1GV+OPy+Mi4PrhxAL1yXVL50HE1DYzkopVKUo+H87WTFPZ43jXc9zvu9BTOlY73HY9XUiv1qLZVKldV4yq1d8/JZZavlUbOS71/SrEqHlrs6LWp6ulw9GB8EEJ4bUrVQ9Dn/Jnv5PU+l66ldd40rMTVsV59+qKuNgZGFPr471LY5UtVTX+t7/Ng0efM688BQS72p176VR6aUsE+yd05ru43gDjwJSEEwFellD8tpfy2EOIPgb8BPOD9W91cDQaDwXB3cdAV7C3dYKWU92zy3EeBj97K/g0Gg8FwcDnoOUFjlXjA2Mr4YSuThr0unAozqW1mq8KY8ddvZHUYvg7T2EJOet2k4ynGn1chy3E7wPHiHHW+4+YMG7U5hY83fvxpDEHCx1PFMOp4qqgoTDj0qQpzgIlh13BbUPhY6jrA9TaYsIG9shVUPFj0qTZsbegQZlIoGkYLd7ZqddnIeCRsBanCnOPv08fEKyPtZeo4am3jxwivsZDpceb15/Ts2PF0g5q7qtqBlFF/pZrlfSvlGz7D4+91eP3hcwi/R2qdKkwMo4VyyURXF8Apk/7wnFsYNc8IEw5Lp9Nt1tYKI0Mvnlj7JX5wyhDx796lIWKDwWAwGG4KX0wp8PaPDtwWRsHepWzUSjKN1eBGbDVSbnzbrUbNbadFZ6Pt91KVT6OMVfHSeLHOZkMGtlsUdTuL38KFTaqgZtw+MUzY5CGsksfH08H14iBlD6mKbMbVkVJGMDpkQCnMT86VbmhxCbNZi1X4GGpb9fOkqMnj8viIsh43LwnvTxUhhQ0hnj07qw0pWm1bX8/H5XG+9y0vaNvB1XJGj7N7umLx3tdfA64r3UktbVsZt3z6eFobRdRrGT0KLzwGL2ypqYZKhC0aVWQhmehqA42wjeT4+6w+52868wo/9PUneYeYLov4GfnPjII1GAwGg2Fa5J0qTafEKFjDbWMj9btdW8Dbcfz9lEveiHGj/I0YNweYlNsL73PS4zvBuCobJ5y3HH9d2AwB4K1nlrRaUm0mSn2Fc4njai1ssqEIDxOYpFSVuh8fIDANqqUnnAtWeWlFWIXC6Hg7pfom5YiBEUMQNXQgfJ5qlKEyBAmvR5lCTBrmrtqFAI4eWSNu91mvp0cGEiieWkro78eVZ5iwbeJzl7I3GF+o6zDeznX/0TpPLSX4y8Ev8qD411Nd99+X7zIK1mAwGAyGaZAYBburGAVruF3cDjW736qqN2IvrTOnyWWq3J2yNwyb8Kv8nbIzVKb9YRvEjQYybDaqT71WKVVgKrW63SET40YbhUyPe04u61FvilbbHlGk4X0owlXW45XXk8wclHIERuwsVR769OkLevuo3cfrxei0Hfq9GN1eTFdrj+f7x3PcYVvKja7PJ+euG1A4Tpf4cHRdMt3m+W++asQUQ72fUfdJvk/88gZXeJQ/lD9iFKzBYDAYDNMgMVXEu4pRsIadYitj/jtBqe5ntuq/Dm+nVN94D/D4tuP73ihfvVEFtnrtdsYqbsZmAwnCwwjCo/iUxaMaK6d6SMfV7Pj+wlacamBAOHer8qKnTgTD0VVuF9BD4pUVYljBq0EJ46p4PKcdPo56vcqnbpTTnjRiT1WFq15eVWG8eKjJv7j4K/yDyEe2vO4Anx/86B2pYG/nuDqDwWAwGKZETv0fkBNCPCmE+IG9XvV2MCFig8FgMOw625ymsy6lfHTHFrNDmBCx4a5io+KnmzGsuBljDMPGxiOTtguHHaeZETzpPQm/dqvjjs9DDaPaYMLtL+OFW5PWPz6HFtDh4vetlEfWrULDYaOM8AxdtbZJx1RFY2qfm12fjYxeNjM4GbeE3Op5GJ34pELli4eaPHcpy6fkB/nvI7+04VrD/PHg3XdkiNgoWIPBYDDsOtsqcrpDMQrWYJiSaVTuVuy1yr2Z9qXdaFfa7Bhhu8Vxthr48Lg8PmLSr9holnBYcW5kATlJqW1kh7mZXSbAe19/TRs9bFX89Iy9pGcTj8+JnXSMrQgXI4UJK1R1/dR24WEPwMjcWDVrNp1u69mx4Zm6R4+scenyjC6y+pXu47zF+tBUa/0v/k8YBWswGAwGw7Qc9HmwRsEaDLvMXhhYbJRD3k5eedrc6bTHn7TNJKZtswm3loRfO2mU2zQDJrbTwjUpMjBNi9DNfA4el8d1DlcRNoTY6phh9b5ZJEYNN1B506eWEiPGF+O54bD94yPdkyP2l6p96cGizz0nl1m+VuJ9Fz/K351SwT7j/6RRsAaDwWAwTMv+kXc7g1GwBsMecSuKcKfWcTPH3ymltl3GTRJuF9vNdao86TRGGtOuWSlPVYEbrkget1UcrzhWBhOqOnl80MC04wzHc9hKxY5XDYdH5IWNKsJ2jg8WfX5h7UO8MfqLmx5b8efee4yCNRgMBoNhGiTgH3ANaxSswbDPuFPtG292XOFOrGM3qp7hxpztVscNj9cL50DHh6OHt9tqqMGbY9bISDpV4bt0LX2DxeKkdd7s9Xqke/KGQQzT5qufsZeQ7n/gDdF/NdWx/l/vEaNgDQaDwWCYhsDJaf8IvJ3AKFiDYZ9ypw2Q32/sltPWtBGHraq2w8PNJ+Vkp/08bJQzDeeFx12xtlvlHR6wEFbkGzlmjXNSxviP8gO8PvrEltsCfNV71ChYg8FgMBimQxv5H1jMDdZgMBgMu44JEe8yJkRsMExmO/NWxx8zXGc7RhN7wbTv8zT72chEYnw+rDKBCLf9jLffbFSMtdFwhWnW63V/k/uij011Ps/1//kdGSK+pXmwQohfFkI8L4T4ayHEnwkhDoeee0wI8bIQ4iUhxIO3vlSDwWAwHCQGyKm+7lRuScEKIbJSyvrw+58FXiOl/GkhxGuA3wfeDBwGngFOSSn9jfdmFKzBcDMY1bp9Nrtmk6wVFVtZS4a32Q/vy1brU8YQcL1ISRlCKHUbZrsmHpsVT3nd3+Te6Aem2s/z/ffffQpW3VyHpLjufPVO4A+klF0p5XngZYKbrcFgMBgMyCnV652sYG+5yEkI8VHgx4B14B8MHz4CfDW02dLwsUmvfxR4FECQv9XlGAx3HUa5bp/Nrll4QMBmZvgbPT/NMXaLaden2oNWewQD20UZmoC49eNvpmLv5JvnNGypYIUQzwghvjXh650AUsonpJRHgc8CKr476W2ZeCWllE9KKd8opXyjEKmbPQ+DwWAw3EFIwGMw1dedypYKVkr5tin39Z+A/wv4EIFiPRp6bhG4su3VGQwGwx6w35Xp7eYZe4lnAOK332pyo3z2nwCDW1TI+51brSK+N/TjDwIvDr//I+BhIURcCHESuBf42q0cy2AwGAwHB9UHa3KwG/NxIcRpgsH0rwA/DSCl/LYQ4g+BvwE84P1bVRAbDAaDYe+5mSrozfp31T5u2E/3zr55TsMt3WCllP/TJs99FPjorezfYDAYDAeTu2FcnbFKNBgMBsMNbKcXeNpBAePbGQVrMBgMBsNtRiLpi4OdOTQ3WIPBYDDsOnsZIhZBT+gngR7wF1LKz+7EccwN1mAwGAwbspU95DRFUJMGUvwRt/cGK4T4HeAfAStSyteFHn878G8BC/htKeXHgYeAz0kpvyiE+D8JfBxuO7fUpmMwGAwGw80gAV/Iqb6m5NPA28MPCCEs4N8D3w+8BvjhoVf+InBpuNmOxan31bg6IUQDeGmv17HLzABre72IXcSc78Hnbjvnu+184fac8xng+Sm3dQA39POTUsonxzcSQpwA/lgpWCHE9wAfllI+OPxZzcdbAqpSyj8WQvyBlPLhmzyHTdlvIeKX7sSJCbeCEOIbd9M5m/M9+Nxt53y3nS/cUed8hOtKFYIb698F/h3wG0KIfwh8cacOvt9usAaDwWAw3C4m+uJLKVvAT+z0wU0O1mAwGAwHlT31xd9vN9gbYup3AXfbOZvzPfjcbed8t50v3Dnn/HXgXiHESSGEDTxMUMC8K+yrIieDwWAwGG4GIcTvA/8DQQHWNeBDUspPCSHeAfw6QZvO7wxtfHdnTeYGazAYDAbD7We/hYgNBoPBYDgQ7JsbrBDi7UKIl4QQLwshPrjX69lJhBBHhRB/LoR4QQjxbSHEz+31mnYDIYQlhHhOCPHHe72W3UAIkRdCfE4I8eLwvf6evV7TTiKE+J+Hn+dvCSF+Xwjh7PWabjdCiN8RQqwIIb4VeqwohPiSEOI7w/8X9nKNt5MNzvcTw8/080KIzwsh8nu4xH3NvrjBbuK2cVDxgP9FSvlq4O8B7z/g56v4OeCFvV7ELvJvgf8ipbwP+Dsc4HMXQhwBfhZ447DJ3yIoKDlofJoxtyDgg8CXpZT3Al8e/nxQ+DQ3nu+XgNdJKc8AZ4HHxl9kCNgXN1jgzcDLUsq/lVL2gD8A3rnHa9oxpJTLUsq/Gn7fIPiH98jermpnEUIsAv8Q+O29XstuIITIAn8f+BSAlLInpazt6aJ2niiQEEJEgSS72A6xW0gp/2+gMvbwO4HfG37/e8A/3s017SSTzldK+WdSSm/441cJWl8ME9gvN9hJbhsH+oajGFp73Q/8f3u8lJ3m14H/DRjs8Tp2i+8CVoHfHYbFf3s4weNAIqW8DPwb4CKwDKxLKf9sb1e1axySUi5D8MczMLfH69lNfhL4071exH5lv9xgJ7pt7PoqdhkhRBr4z8DPSynre72enUIIoSZc/Le9XssuEgX+O+A3pZT3Ay0OVuhwhGHe8Z3ASeAwkBJC/MjersqwkwghniBId+3IJJqDwH65we6p28ZeIISIEdxcPyulfGqv17PDPAD8oBDiAkH4/38UQnxmb5e04ywBS1JKFZn4HMEN96DyNuC8lHJVStkHngLessdr2i2uCSEWAIb/X9nj9ew4Qoh3E4yGe5c0vZ4bsl9usHvqtrHbCCEEQW7uBSnlr+71enYaKeVjUspFKeUJgvf2v0opD7S6kVJeBS4JIU4PH3or8Dd7uKSd5iLw94QQyeHn+60c4KKuMf4IePfw+3cDX9jDtew4w/mqHwB+UErZ3uv17Gf2xQ12mDD/GeBpgl/KP5RSfntvV7WjPAD8KIGS++vh1zv2elGG286/AD4rhHgeeAPwsb1dzs4xVOqfA/4K+CbBvy13ip3e1Azdgr4CnBZCLAkh3gN8HPg+IcR3gO8b/nwg2OB8fwPIAF8a/tv1H/Z0kfsY4+RkMBgMBsMOsC8UrMFgMBgMBw1zgzUYDAaDYQcwN1iDwWAwGHYAc4M1GAwGg2EHMDdYg8FgMBh2AHODNRgMBoNhBzA3WIPBYDAYdoD/H8McWjNVcW68AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "#| label: plasma\n", + "# | label: plasma\n", "fig, axes = plt.subplots(figsize=(8, 4), constrained_layout=True)\n", "cmap = copy(plt.cm.plasma)\n", "cmap.set_bad(cmap(0))\n", "h, xedges, yedges = np.histogram2d(x_fine, y_fine, bins=[400, 100])\n", - "pcm = axes.pcolormesh(xedges, yedges, h.T, cmap=cmap,\n", - " norm=LogNorm(vmax=1.5e2), rasterized=True)\n", + "pcm = axes.pcolormesh(\n", + " xedges, yedges, h.T, cmap=cmap, norm=LogNorm(vmax=1.5e2), rasterized=True\n", + ")\n", "fig.colorbar(pcm, ax=axes, label=\"# points\", pad=0)\n", "axes.set_title(\"2d histogram and log color scale\");" ] diff --git a/requirements.txt b/requirements.txt index 3f23ce0..d2ffaa9 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,8 +1,8 @@ # To execute the code in our notebook altair -matplotlib -numpy -vega_datasets # To interactively browser Jupyter content with MyST jupyterlab_myst +matplotlib +numpy +vega_datasets