-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path6_process_results.py
263 lines (221 loc) · 8.57 KB
/
6_process_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Ed Mountjoy
#
'''
Processes results for the genetics portal. Processing includes:
1. Make the table symmetrical again
2. Filter to keep only left_type == gwas
3. Only keep the top colocalising result if multiple right loci were tested
4. Filter to remove colocs where small number of variants overlapped.
'''
'''
# Set SPARK_HOME and PYTHONPATH to use 2.4.0
export PYSPARK_SUBMIT_ARGS="--driver-memory 8g pyspark-shell"
export SPARK_HOME=/Users/em21/software/spark-2.4.0-bin-hadoop2.7
export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/lib/py4j-2.4.0-src.zip:$PYTHONPATH
'''
import gzip
from glob import glob
import pyspark.sql
from pyspark.sql import Window
from pyspark.sql.functions import *
from pyspark.sql.types import *
def main():
# Make spark session
spark = (
pyspark.sql.SparkSession.builder
.config("spark.master", "local[*]")
.getOrCreate()
)
# sc = spark.sparkContext
print('Spark version: ', spark.version)
# File args
in_parquet = '/output/coloc_raw.parquet'
out_parquet = '/output/coloc_processed.parquet'
# in_parquet = '/Users/em21/Projects/genetics-colocalisation/tmp/coloc_raw.parquet'
# out_parquet = '/Users/em21/Projects/genetics-colocalisation/tmp/coloc_processed.parquet'
in_phenotype_maps = '/configs/phenotype_id_gene_luts/*.tsv.gz'
# Results parameters
make_symmetric = True # Will make the coloc matrix symmetric
left_gwas_only = True # Output will only contains rows where left_type == gwas
deduplicate_right = True # For each left dataset, only keep the "best" right dataset
min_overlapping_vars = 100 # Only keep results with this many overlapping vars
# Load
df = spark.read.parquet(in_parquet) #.limit(100)
# Rename and calc new columns
df = (
df.withColumnRenamed('PP.H0.abf', 'coloc_h0')
.withColumn('coloc_h4_h3', (col('coloc_h4') / col('coloc_h3')))
.withColumn('coloc_log2_h4_h3', log2(col('coloc_h4_h3')))
)
# Filter based on the number of snps overlapping the left and right datasets
last_n = df.count()
if min_overlapping_vars:
df = df.filter(col('coloc_n_vars') >= min_overlapping_vars)
print('{} coloc tests removed for having fewer than {} overlapping variants'.format(last_n - df.count(), min_overlapping_vars))
# Make symmetric
if make_symmetric:
df_rev = df
# Move all left_ columns to temp_
for colname in [x for x in df_rev.columns if x.startswith('left_')]:
df_rev = df_rev.withColumnRenamed(
colname, colname.replace('left_', 'temp_'))
# Move all right_ columns to left_
for colname in [x for x in df_rev.columns if x.startswith('right_')]:
df_rev = df_rev.withColumnRenamed(
colname, colname.replace('right_', 'left_'))
# Move all temp_ columns to right_
for colname in [x for x in df_rev.columns if x.startswith('temp_')]:
df_rev = df_rev.withColumnRenamed(
colname, colname.replace('temp_', 'right_'))
# Take union by name between original and flipped dataset
df = df.withColumn('is_flipped', lit(False))
df_rev = df_rev.withColumn('is_flipped', lit(True))
df = df.unionByName(df_rev)
# Keep only rows where left_type == gwas
if left_gwas_only:
last_n = df.count()
df = df.filter(col('left_type') == 'gwas')
print('{} coloc tests removed where left_type was not gwas'.format( int(last_n - df.count())/2) )
# Deduplicate right
if deduplicate_right:
# Deduplicate the right dataset
col_subset = [
'left_type',
'left_study',
'left_phenotype',
'left_bio_feature',
'left_chrom',
'left_pos',
'left_ref',
'left_alt',
'right_type',
'right_study',
'right_bio_feature',
'right_phenotype',
# 'right_chrom',
# 'right_pos',
# 'right_ref',
# 'right_alt'
]
# Drop duplicates, keeping first
last_n = df.count()
df = drop_duplicates_keep_first(
df,
subset=col_subset,
order_colname='coloc_h4',
ascending=False
)
print('{} coloc tests removed that were duplicates'.format( int((last_n - df.count())/2) ))
# Add gene_id using phenotype_id
# Need to handle both eQTLs, which may have phenotype_id as an array probe
# and sQTLs, which have the gene_id within the phenotype_id field
phenotype_map = load_pheno_to_gene_map(in_phenotype_maps)
biofeature_mapper = udf(lambda x: phenotype_map.get(x, x))
df = (
df.withColumn('left_gene_id',
when(col('left_type') == 'eqtl', biofeature_mapper(col('left_phenotype')))
.otherwise(lit(None)))
.withColumn('right_gene_id',
when(col('right_type') == 'eqtl', biofeature_mapper(col('right_phenotype')))
.otherwise(lit(None)))
.withColumn('left_gene_id',
when(col('left_type') == 'sqtl', split(col('left_phenotype'), '\^').getItem(4))
.otherwise(col('left_gene_id')))
.withColumn('right_gene_id',
when(col('right_type') == 'sqtl', split(col('right_phenotype'), '\^').getItem(4))
.otherwise(col('right_gene_id')))
)
# Set gene_id to null if it doesn't start with ENSG
for colname in ['left_gene_id', 'right_gene_id']:
df = df.withColumn(
colname,
when(col(colname).startswith('ENSG'), col(colname))
.otherwise(lit(None))
)
# Set phenotype_id and bio_feature to null if they somehow have the value "None"
for colname in ['left_phenotype', 'left_bio_feature', 'right_phenotype', 'right_bio_feature']:
df = df.withColumn(
colname,
when(col(colname).eqNullSafe('None'), lit(None))
.otherwise(col(colname))
)
# Remove unneeded columns
df = df.drop('left_sumstat', 'right_sumstat')
if left_gwas_only:
df = df.drop('left_gene_id', 'left_bio_feature', 'left_phenotype')
# Remove rows that have null in coloc stat columns
last_n = df.count()
df = df.dropna(
subset=['coloc_h3', 'coloc_h4', 'coloc_log2_h4_h3'],
how='any'
)
print('{} coloc tests removed for having NA values for H4 or H3'.format( int((last_n - df.count())/2) ))
# Repartition
df = (
df.repartitionByRange(100, 'left_chrom', 'left_pos')
.sortWithinPartitions('left_chrom', 'left_pos')
)
# Write
(
df
.write.parquet(
out_parquet,
mode='overwrite'
)
)
return 0
def drop_duplicates_keep_first(df, subset, order_colname, ascending=True):
''' Implements the equivalent pd.drop_duplicates(keep='first')
Args:
df (spark df)
subset (list): columns to partition by
order_colname (str): column to sort by
ascending (bool): whether to sort ascending
Returns:
df
'''
assert isinstance(subset, list)
# Get order column ascending or descending
if ascending:
order_col = col(order_colname)
else:
order_col = col(order_colname).desc()
# Specfiy window spec
window = Window.partitionBy(*subset).orderBy(
order_col, 'tiebreak')
# Select first
res = (
df
.withColumn('tiebreak', monotonically_increasing_id())
.withColumn('rank', rank().over(window))
.filter(col('rank') == 1)
.drop('rank', 'tiebreak')
)
return res
def load_pheno_to_gene_map(infs):
''' Loads a dictionary, mapping phenotype_ids to ensembl gene IDs.
Input files should have 2 columns phenotype_id, gene_id
'''
d = {}
for inf in glob(infs):
with gzip.open(inf, 'r') as in_h:
# Skip header
header = (
in_h.readline()
.decode()
.rstrip()
.split('\t')
)
# Load each line into dict
for line in in_h:
parts = line.decode().rstrip().split('\t')
if not parts[header.index('gene_id')].startswith('ENSG'):
continue
d[parts[header.index('phenotype_id')]] = \
parts[header.index('gene_id')]
return d
if __name__ == '__main__':
main()