-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsimple_fullpfalgo_ref.cpp
354 lines (317 loc) · 16.5 KB
/
simple_fullpfalgo_ref.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#include "firmware/data.h"
#include "firmware/simple_fullpfalgo.h"
#include "DiscretePFInputs.h"
#include "utils/Firmware2DiscretePF.h"
#include <cmath>
#include <algorithm>
bool g_debug_ = 0;
void pfalgo3_full_ref_set_debug(bool debug) { g_debug_ = debug; }
template <typename T> int sqr(const T & t) { return t*t; }
template<int NCAL, int DR2MAX, bool doPtMin, typename CO_t>
int best_match_ref(CO_t calo[NCAL], const TkObj & track) {
pt_t caloPtMin = track.hwPt - 2*(track.hwPtErr);
if (caloPtMin < 0) caloPtMin = 0;
int drmin = DR2MAX, ibest = -1;
for (int ic = 0; ic < NCAL; ++ic) {
if (doPtMin && calo[ic].hwPt <= caloPtMin) continue;
int dr = dr2_int(track.hwEta, track.hwPhi, calo[ic].hwEta, calo[ic].hwPhi);
if (dr < drmin) { drmin = dr; ibest = ic; }
}
return ibest;
}
template<int NCAL, int DR2MAX>
int best_match_ref(HadCaloObj calo[NCAL], const EmCaloObj & em) {
pt_t emPtMin = em.hwPt >> 1;
int drmin = DR2MAX, ibest = -1;
for (int ic = 0; ic < NCAL; ++ic) {
if (calo[ic].hwEmPt <= emPtMin) continue;
int dr = dr2_int(em.hwEta, em.hwPhi, calo[ic].hwEta, calo[ic].hwPhi);
if (dr < drmin) { drmin = dr; ibest = ic; }
}
return ibest;
}
template<int NCAL, int DR2MAX, typename CO_t>
int best_match_with_pt_ref(CO_t calo[NCAL], const TkObj & track) {
pt_t caloPtMin = track.hwPt - 2*(track.hwPtErr);
if (caloPtMin < 0) caloPtMin = 0;
int dptscale = (DR2MAX<<8)/std::max<int>(1,sqr(track.hwPtErr));
int drmin = 0, ibest = -1;
for (int ic = 0; ic < NCAL; ++ic) {
if (calo[ic].hwPt <= caloPtMin) continue;
int dr = dr2_int(track.hwEta, track.hwPhi, calo[ic].hwEta, calo[ic].hwPhi);
if (dr >= DR2MAX) continue;
dr += (( sqr(std::max<int>(track.hwPt-calo[ic].hwPt,0))*dptscale ) >> 8);
//printf("REF DQ(track %+7d %+7d calo %3d) = %12d\n", int(track.hwEta), int(track.hwPhi), ic, dr);
if (ibest == -1 || dr < drmin) { drmin = dr; ibest = ic; }
}
return ibest;
}
template<int NCAL, int DR2MAX, bool doPtMin, typename CO_t>
void link_ref(CO_t calo[NCAL], TkObj track[NTRACK], ap_uint<NCAL> calo_track_link_bit[NTRACK]) {
for (int it = 0; it < NTRACK; ++it) {
int ibest = best_match_ref<NCALO,DR2MAX,doPtMin,CO_t>(calo, track[it]);
calo_track_link_bit[it] = 0;
if (ibest != -1) calo_track_link_bit[it][ibest] = 1;
}
}
template<typename T, int NIn, int NOut>
void ptsort_ref(T in[NIn], T out[NOut]) {
for (int iout = 0; iout < NOut; ++iout) {
out[iout].hwPt = 0;
}
for (int it = 0; it < NIn; ++it) {
for (int iout = 0; iout < NOut; ++iout) {
if (in[it].hwPt >= out[iout].hwPt) {
for (int i2 = NOut-1; i2 > iout; --i2) {
out[i2] = out[i2-1];
}
out[iout] = in[it];
break;
}
}
}
}
void pfalgo3_em_ref(EmCaloObj emcalo[NEMCALO], HadCaloObj hadcalo[NCALO], TkObj track[NTRACK], bool isEle[NTRACK], bool isMu[NTRACK], PFNeutralObj outpho[NPHOTON], HadCaloObj hadcalo_out[NCALO]) {
// constants
const int DR2MAX_TE = PFALGO3_DR2MAX_TK_EM;
const int DR2MAX_EH = PFALGO3_DR2MAX_EM_CALO;
// initialize sum track pt
pt_t calo_sumtk[NEMCALO];
for (int ic = 0; ic < NEMCALO; ++ic) { calo_sumtk[ic] = 0; }
int tk2em[NTRACK];
bool isEM[NEMCALO];
// for each track, find the closest calo
for (int it = 0; it < NTRACK; ++it) {
if (track[it].hwPt > 0 && !isMu[it]) {
tk2em[it] = best_match_ref<NEMCALO,DR2MAX_TE,false,EmCaloObj>(emcalo, track[it]);
if (tk2em[it] != -1) {
if (g_debug_) printf("FW \t track %3d pt %7d matched to em calo %3d pt %7d\n", it, int(track[it].hwPt), tk2em[it], int(emcalo[tk2em[it]].hwPt));
calo_sumtk[tk2em[it]] += track[it].hwPt;
}
} else {
tk2em[it] = -1;
}
}
if (g_debug_) {
for (int ic = 0; ic < NEMCALO; ++ic) { if (emcalo[ic].hwPt > 0) printf("FW \t emcalo %3d pt %7d has sumtk %7d\n", ic, int(emcalo[ic].hwPt), int(calo_sumtk[ic])); }
}
for (int ic = 0; ic < NEMCALO; ++ic) {
pt_t photonPt;
if (calo_sumtk[ic] > 0) {
pt_t ptdiff = emcalo[ic].hwPt - calo_sumtk[ic];
int sigma2 = sqr(emcalo[ic].hwPtErr);
int sigma2Lo = 4*sigma2, sigma2Hi = sigma2 + (sigma2>>1);
int ptdiff2 = ptdiff*ptdiff;
if ((ptdiff > 0 && ptdiff2 <= sigma2Hi) || (ptdiff < 0 && ptdiff2 < sigma2Lo)) {
// electron
photonPt = 0;
isEM[ic] = true;
if (g_debug_) printf("FW \t emcalo %3d pt %7d ptdiff %7d [match window: -%.2f / +%.2f] flagged as electron\n", ic, int(emcalo[ic].hwPt), int(ptdiff), std::sqrt(float(sigma2Lo)), std::sqrt(float(sigma2Hi)));
} else if (ptdiff > 0) {
// electron + photon
photonPt = ptdiff;
isEM[ic] = true;
if (g_debug_) printf("FW \t emcalo %3d pt %7d ptdiff %7d [match window: -%.2f / +%.2f] flagged as electron + photon of pt %7d\n", ic, int(emcalo[ic].hwPt), int(ptdiff), std::sqrt(float(sigma2Lo)), std::sqrt(float(sigma2Hi)), int(photonPt));
} else {
// pion
photonPt = 0;
isEM[ic] = false;
if (g_debug_) printf("FW \t emcalo %3d pt %7d ptdiff %7d [match window: -%.2f / +%.2f] flagged as pion\n", ic, int(emcalo[ic].hwPt), int(ptdiff), std::sqrt(float(sigma2Lo)), std::sqrt(float(sigma2Hi)));
}
} else {
// photon
isEM[ic] = true;
photonPt = emcalo[ic].hwPt;
if (g_debug_ && emcalo[ic].hwPt > 0) printf("FW \t emcalo %3d pt %7d flagged as photon\n", ic, int(emcalo[ic].hwPt));
}
outpho[ic].hwPt = photonPt;
outpho[ic].hwEta = photonPt ? emcalo[ic].hwEta : etaphi_t(0);
outpho[ic].hwPhi = photonPt ? emcalo[ic].hwPhi : etaphi_t(0);
outpho[ic].hwId = photonPt ? PID_Photon : particleid_t(0);
}
for (int it = 0; it < NTRACK; ++it) {
isEle[it] = (tk2em[it] != -1) && isEM[tk2em[it]];
if (g_debug_ && isEle[it]) printf("FW \t track %3d pt %7d flagged as electron.\n", it, int(track[it].hwPt));
}
int em2calo[NEMCALO];
for (int ic = 0; ic < NEMCALO; ++ic) {
em2calo[ic] = best_match_ref<NCALO,DR2MAX_EH>(hadcalo, emcalo[ic]);
if (g_debug_ && (emcalo[ic].hwPt > 0)) {
printf("FW \t emcalo %3d pt %7d isEM %d matched to hadcalo %7d pt %7d emPt %7d isEM %d\n",
ic, int(emcalo[ic].hwPt), isEM[ic], em2calo[ic], (em2calo[ic] >= 0 ? int(hadcalo[em2calo[ic]].hwPt) : -1),
(em2calo[ic] >= 0 ? int(hadcalo[em2calo[ic]].hwEmPt) : -1), (em2calo[ic] >= 0 ? int(hadcalo[em2calo[ic]].hwIsEM) : 0));
}
}
for (int ih = 0; ih < NCALO; ++ih) {
hadcalo_out[ih] = hadcalo[ih];
pt_t sub = 0; bool keep = false;
for (int ic = 0; ic < NEMCALO; ++ic) {
if (em2calo[ic] == ih) {
if (isEM[ic]) sub += emcalo[ic].hwPt;
else keep = true;
}
}
pt_t emdiff = hadcalo[ih].hwEmPt - sub;
pt_t alldiff = hadcalo[ih].hwPt - sub;
if (g_debug_ && (hadcalo[ih].hwPt > 0)) {
printf("FW \t calo %3d pt %7d has a subtracted pt of %7d, empt %7d -> %7d isem %d keep %d \n",
ih, int(hadcalo[ih].hwPt), int(alldiff), int(hadcalo[ih].hwEmPt), int(emdiff), int(hadcalo[ih].hwIsEM), keep);
}
if (alldiff <= ( hadcalo[ih].hwPt >> 4 ) ) {
hadcalo_out[ih].hwPt = 0; // kill
hadcalo_out[ih].hwEmPt = 0; // kill
if (g_debug_ && (hadcalo[ih].hwPt > 0)) printf("FW \t calo %3d pt %7d --> discarded (zero pt)\n", ih, int(hadcalo[ih].hwPt));
} else if ((hadcalo[ih].hwIsEM && emdiff <= ( hadcalo[ih].hwEmPt >> 3 )) && !keep) {
hadcalo_out[ih].hwPt = 0; // kill
hadcalo_out[ih].hwEmPt = 0; // kill
if (g_debug_ && (hadcalo[ih].hwPt > 0)) printf("FW \t calo %3d pt %7d --> discarded (zero em)\n", ih, int(hadcalo[ih].hwPt));
} else {
hadcalo_out[ih].hwPt = alldiff;
hadcalo_out[ih].hwEmPt = (emdiff > 0 ? emdiff : pt_t(0));
}
}
}
void pfalgo3_full_ref(EmCaloObj emcalo[NEMCALO], HadCaloObj hadcalo[NCALO], TkObj track[NTRACK], MuObj mu[NMU], PFChargedObj outch[NTRACK], PFNeutralObj outpho[NPHOTON], PFNeutralObj outne[NSELCALO], PFChargedObj outmu[NMU]) {
if (g_debug_) {
#ifdef FASTPUPPI_NTUPLERPRODUCER_DISCRETEPFINPUTS_MORE
for (int i = 0; i < NTRACK; ++i) { if (track[i].hwPt == 0) continue;
l1tpf_int::PropagatedTrack tk; fw2dpf::convert(track[i], tk);
printf("FW \t track %3d: pt %8d [ %7.2f ] calo eta %+7d [ %+5.2f ] calo phi %+7d [ %+5.2f ] calo ptErr %6d [ %7.2f ] \n",
i, tk.hwPt, tk.floatPt(), tk.hwEta, tk.floatEta(), tk.hwPhi, tk.floatPhi(), tk.hwCaloPtErr, tk.floatCaloPtErr());
}
for (int i = 0; i < NEMCALO; ++i) { if (emcalo[i].hwPt == 0) continue;
l1tpf_int::CaloCluster em; fw2dpf::convert(emcalo[i], em);
printf("FW \t EM %3d: pt %8d [ %7.2f ] calo eta %+7d [ %+5.2f ] calo phi %+7d [ %+5.2f ] calo ptErr %6d [ %7.2f ] \n",
i, em.hwPt, em.floatPt(), em.hwEta, em.floatEta(), em.hwPhi, em.floatPhi(), em.hwPtErr, em.floatPtErr());
}
for (int i = 0; i < NCALO; ++i) { if (hadcalo[i].hwPt == 0) continue;
l1tpf_int::CaloCluster calo; fw2dpf::convert(hadcalo[i], calo);
printf("FW \t calo %3d: pt %8d [ %7.2f ] calo eta %+7d [ %+5.2f ] calo phi %+7d [ %+5.2f ] calo emPt %7d [ %7.2f ] isEM %d \n",
i, calo.hwPt, calo.floatPt(), calo.hwEta, calo.floatEta(), calo.hwPhi, calo.floatPhi(), calo.hwEmPt, calo.floatEmPt(), calo.isEM);
}
for (int i = 0; i < NMU; ++i) { if (mu[i].hwPt == 0) continue;
l1tpf_int::Muon muon; fw2dpf::convert(mu[i], muon);
printf("FW \t muon %3d: pt %8d [ %7.2f ] muon eta %+7d [ %+5.2f ] muon phi %+7d [ %+5.2f ] \n",
i, muon.hwPt, muon.floatPt(), muon.hwEta, muon.floatEta(), muon.hwPhi, muon.floatPhi());
}
#endif
}
// constants
const pt_t TKPT_MAX_LOOSE = PFALGO3_TK_MAXINVPT_LOOSE; // 20 * PT_SCALE;
const pt_t TKPT_MAX_TIGHT = PFALGO3_TK_MAXINVPT_TIGHT; // 20 * PT_SCALE;
const int DR2MAX = PFALGO3_DR2MAX_TK_CALO;
const int DR2MAX_TM = PFALGO3_DR2MAX_TK_MU;
////////////////////////////////////////////////////
// TK-MU Linking
// initialize good track bit
// bool mu_good[NMU];
// for (int im = 0; im < NMU; ++im) { mu_good[im] = (mu[im].hwPt < TKPT_MAX); }
// initialize output
for (int ipf = 0; ipf < NMU; ++ipf) { outmu[ipf].hwPt = 0; outmu[ipf].hwEta = 0; outmu[ipf].hwPhi = 0; outmu[ipf].hwId = 0; outmu[ipf].hwZ0 = 0; }
bool isMu[NTRACK];
for (int it = 0; it < NTRACK; ++it) { isMu[it] = 0; } // initialize
// for each muon, find the closest track
for (int im = 0; im < NMU; ++im) {
if (mu[im].hwPt > 0) {
int ibest = -1;
int dptmin = mu[im].hwPt >> 1;
for (int it = 0; it < NTRACK; ++it) {
int dr = dr2_int(mu[im].hwEta, mu[im].hwPhi, track[it].hwEta, track[it].hwPhi);
//printf("deltaR2(mu %d float pt %5.1f, tk %2d float pt %5.1f) = int %d (float deltaR = %.3f); int cut at %d\n", im, 0.25*int(mu[im].hwPt), it, 0.25*int(track[it].hwPt), dr, std::sqrt(float(dr))/229.2, PFALGO3_DR2MAX_TK_MU);
if (dr < DR2MAX_TM) {
int dpt = std::abs(int(track[it].hwPt - mu[im].hwPt));
if (dpt < dptmin) {
dptmin = dpt; ibest = it;
}
}
}
if (ibest != -1) {
outmu[im].hwPt = track[ibest].hwPt;
outmu[im].hwEta = track[ibest].hwEta;
outmu[im].hwPhi = track[ibest].hwPhi;
outmu[im].hwId = PID_Muon;
outmu[im].hwZ0 = track[ibest].hwZ0;
isMu[ibest] = 1;
if (g_debug_) printf("FW \t muon %3d linked to track %3d \n", im, ibest);
} else {
if (g_debug_) printf("FW \t muon %3d not linked to any track\n", im);
}
}
}
////////////////////////////////////////////////////
// TK-EM Linking
bool isEle[NTRACK];
HadCaloObj hadcalo_subem[NCALO];
pfalgo3_em_ref(emcalo, hadcalo, track, isEle, isMu, outpho, hadcalo_subem);
////////////////////////////////////////////////////
// TK-HAD Linking
// initialize sum track pt
pt_t calo_sumtk[NCALO], calo_subpt[NCALO];
int calo_sumtkErr2[NCALO];
for (int ic = 0; ic < NCALO; ++ic) { calo_sumtk[ic] = 0; calo_sumtkErr2[ic] = 0;}
// initialize good track bit
bool track_good[NTRACK];
for (int it = 0; it < NTRACK; ++it) {
track_good[it] = (track[it].hwPt < (track[it].hwTightQuality ? TKPT_MAX_TIGHT : TKPT_MAX_LOOSE) || isEle[it] || isMu[it]);
}
// initialize output
for (int ipf = 0; ipf < NTRACK; ++ipf) { outch[ipf].hwPt = 0; outch[ipf].hwEta = 0; outch[ipf].hwPhi = 0; outch[ipf].hwId = 0; outch[ipf].hwZ0 = 0; }
for (int ipf = 0; ipf < NSELCALO; ++ipf) { outne[ipf].hwPt = 0; outne[ipf].hwEta = 0; outne[ipf].hwPhi = 0; outne[ipf].hwId = 0; }
// for each track, find the closest calo
for (int it = 0; it < NTRACK; ++it) {
if (track[it].hwPt > 0 && !isEle[it] && !isMu[it]) {
int ibest = best_match_with_pt_ref<NCALO,DR2MAX,HadCaloObj>(hadcalo_subem, track[it]);
//int ibest = best_match_ref<NCALO,DR2MAX,true,HadCaloObj>(hadcalo_subem, track[it]);
if (ibest != -1) {
if (g_debug_) printf("FW \t track %3d pt %7d matched to calo' %3d pt %7d\n", it, int(track[it].hwPt), ibest, int(hadcalo_subem[ibest].hwPt));
track_good[it] = 1;
calo_sumtk[ibest] += track[it].hwPt;
calo_sumtkErr2[ibest] += sqr(track[it].hwPtErr);
}
}
}
for (int ic = 0; ic < NCALO; ++ic) {
if (calo_sumtk[ic] > 0) {
pt_t ptdiff = hadcalo_subem[ic].hwPt - calo_sumtk[ic];
int sigmamult = (calo_sumtkErr2[ic] + (calo_sumtkErr2[ic] >> 1)); // this multiplies by 1.5 = sqrt(1.5)^2 ~ (1.2)^2
if (g_debug_ && (hadcalo_subem[ic].hwPt > 0)) {
#ifdef FASTPUPPI_NTUPLERPRODUCER_DISCRETEPFINPUTS_MORE
l1tpf_int::CaloCluster floatcalo; fw2dpf::convert(hadcalo_subem[ic], floatcalo);
printf("FW \t calo' %3d pt %7d [ %7.2f ] eta %+7d [ %+5.2f ] has a sum track pt %7d, difference %7d +- %.2f \n",
ic, int(hadcalo_subem[ic].hwPt), floatcalo.floatPt(), int(hadcalo_subem[ic].hwEta), floatcalo.floatEta(),
int(calo_sumtk[ic]), int(ptdiff), std::sqrt(float(int(calo_sumtkErr2[ic]))));
#endif
}
if (ptdiff > 0 && ptdiff*ptdiff > sigmamult) {
calo_subpt[ic] = ptdiff;
} else {
calo_subpt[ic] = 0;
}
} else {
calo_subpt[ic] = hadcalo_subem[ic].hwPt;
}
if (g_debug_ && (hadcalo_subem[ic].hwPt > 0)) printf("FW \t calo' %3d pt %7d ---> %7d \n", ic, int(hadcalo_subem[ic].hwPt), int(calo_subpt[ic]));
}
// copy out charged hadrons
for (int it = 0; it < NTRACK; ++it) {
if (track_good[it]) {
outch[it].hwPt = track[it].hwPt;
outch[it].hwEta = track[it].hwEta;
outch[it].hwPhi = track[it].hwPhi;
outch[it].hwZ0 = track[it].hwZ0;
outch[it].hwId = isEle[it] ? PID_Electron : (isMu[it] ? PID_Muon : PID_Charged);
}
}
// copy out neutral hadrons
PFNeutralObj outne_all[NCALO];
for (int ipf = 0; ipf < NCALO; ++ipf) { outne_all[ipf].hwPt = 0; outne_all[ipf].hwEta = 0; outne_all[ipf].hwPhi = 0; outne_all[ipf].hwId = 0; }
for (int ic = 0; ic < NCALO; ++ic) {
if (calo_subpt[ic] > 0) {
outne_all[ic].hwPt = calo_subpt[ic];
outne_all[ic].hwEta = hadcalo_subem[ic].hwEta;
outne_all[ic].hwPhi = hadcalo_subem[ic].hwPhi;
outne_all[ic].hwId = PID_Neutral;
}
}
ptsort_ref<PFNeutralObj,NCALO,NSELCALO>(outne_all, outne);
}