Skip to content

Latest commit

 

History

History
46 lines (28 loc) · 1.23 KB

README.md

File metadata and controls

46 lines (28 loc) · 1.23 KB

distribute2mpi

Batch processor for localhost (Linux and OSX tested) or HPC system based on mpi

It offers an interface similar to the one of multiprocessing Pool to run python method in parallel.

Righ now a simple map method is available.

Pypi project page

Instalation:

pip install distribute2mpi

Usage:

import distribute2mpi

def a_func(some_input):
    do_stuff()

pool = distribute2mpi.MpiPool(n_proc=2)

async_results = pool.map_async(a_func, [input_1, input_2])

pool.join()

results = async_results.get()

To execute script using distribute2mpi on a single machine, just run mpiexec -n 1 my_script.py --some_options --more_options

To run your code on 1000 processors (!) on an HPC running for example PBS, run qsub submit_myscript.sh, where submit_myscript.sh is:

#!/bin/bash
#PBS -l procs=1000 
#PBS -N THIS_IS_USING_A_LOT_OF_RESSOURSES

mpiexec -n 1 my_script.py --some_options --more_options

The module distribute2mpi is developed to be the parralel computing tool of the SpinalCordToolbox https://github.com/neuropoly/spinalcordtoolbox. It is built around mpi4py https://pypi.python.org/pypi/mpi4py.