-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_hans.py
265 lines (227 loc) · 8.47 KB
/
test_hans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import dataclasses
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
import torch
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.sampler import SequentialSampler
from tqdm.auto import tqdm, trange
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
EvalPrediction,
)
from transformers import GlueDataTrainingArguments as DataTrainingArguments
from transformers import HfArgumentParser, TrainingArguments, set_seed
from hans.dataset import HansDataset
from hans.processors import (
glue_output_modes,
glue_tasks_num_labels,
load_and_cache_examples,
)
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={
"help": (
"Path to pretrained model or model identifier from"
" huggingface.co/models"
)
}
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name"
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": (
"Where do you want to store the pretrained models downloaded from s3"
)
},
)
def evaluate(
model_args, data_args, training_args, eval_dataset, model, tokenizer, prefix="",
):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_task_names = (
("mnli", "mnli-mm") if data_args.task_name == "mnli" else (data_args.task_name,)
)
eval_outputs_dirs = (
(training_args.output_dir, training_args.output_dir + "-MM")
if data_args.task_name == "mnli"
else (training_args.output_dir,)
)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset, label_list = load_and_cache_examples(
model_args, data_args, training_args, eval_task, tokenizer, evaluate=True,
)
if not os.path.exists(eval_output_dir) and training_args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset,
sampler=eval_sampler,
batch_size=training_args.per_gpu_eval_batch_size,
)
# multi-gpu eval
if training_args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", training_args.per_gpu_eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval().to(training_args.device)
batch = tuple(t.to(training_args.device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"labels": batch[3],
}
inputs["token_type_ids"] = None
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
pair_ids = batch[4].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(
out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0,
)
pair_ids = np.append(pair_ids, batch[4].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
if data_args.output_mode == "classification":
preds = np.argmax(preds, axis=1)
elif data_args.output_mode == "regression":
preds = np.squeeze(preds)
output_eval_file = os.path.join(eval_output_dir, "hans_predictions.txt")
with open(output_eval_file, "w") as writer:
writer.write("pairID,gld_label\n")
for pid, pred in zip(pair_ids, preds):
writer.write("ex" + str(pid) + "," + label_list[int(pred)] + "\n")
return results
def main():
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
(model_args, data_args, training_args,) = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and"
" is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s,"
" 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
num_labels = glue_tasks_num_labels[data_args.task_name]
output_mode = glue_output_modes[data_args.task_name]
config = AutoConfig.from_pretrained(
model_args.config_name
if model_args.config_name
else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task="MNLI",
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name
else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
eval_dataset = (
HansDataset(data_args, tokenizer=tokenizer, evaluate=True)
if training_args.do_eval
else None
)
# Training
if training_args.do_train:
print(
"Please turn training_args.do_train off. Only evaluation supported on HANS."
)
# Evaluation
results = {}
if training_args.do_eval and training_args.local_rank in [-1, 0]:
logger.info("*** Evaluate ***")
data_args.output_mode = output_mode
result = evaluate(
model_args, data_args, training_args, eval_dataset, model, tokenizer,
)
output_eval_file = os.path.join(
training_args.output_dir, f"eval_results_{eval_dataset.args.task_name}.txt",
)
with open(output_eval_file, "w") as writer:
logger.info(
"***** Eval results {} *****".format(eval_dataset.args.task_name)
)
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(result)
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()