From 454c47ba03d20427e04033cffd5d187eafc393c8 Mon Sep 17 00:00:00 2001 From: achains Date: Sun, 3 Sep 2023 22:32:05 +0300 Subject: [PATCH] feat: updated readme --- README.md | 87 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 87 insertions(+) diff --git a/README.md b/README.md index e69de29..618ac2d 100644 --- a/README.md +++ b/README.md @@ -0,0 +1,87 @@ +# Instance Segmentation Metrics +[![Build and publish](https://github.com/prime-slam/instanseg-metrics/actions/workflows/ci.yml/badge.svg)](https://github.com/prime-slam/instanseg-metrics/actions/workflows/ci.yml) + +

+ Instanseg is an open-source python library that provides various metrics for evaluating the results of the algorithms for segmenting and associating instances. +

+ +

+ List of metrics implemented in the library: +

+ + + +

+ For more, please visit the Instanseg documentation. +

+

+ You can also find full information about the project on the Instanseg project website. +

+ +# Python quick start + +

+ Library can be installed using the pip package manager: +

+ +```bash +$ # Install package +$ pip install instanseg + +$ # Check installed version of package +$ pip show instanseg +``` + +# Example of usage + +

+ Below is an example of using the precision metric: +

+ +```bash +>>> from instanseg.metrics import precision +>>> pred_labels = np.array([1, 1, 3, 3]) +>>> gt_labels = np.array([2, 2, 0, 3]) +>>> tp_condition = "iou" +>>> precision(pred_labels, gt_labels, tp_condition) +0.5 +``` + +# Citation +``` +@misc{kornilova2022evops, + title={EVOPS Benchmark: Evaluation of Plane Segmentation from RGBD and LiDAR Data}, + author={Anastasiia Kornilova, Dmitrii Iarosh, Denis Kukushkin, Nikolai Goncharov, Pavel Mokeev, Arthur Saliou, Gonzalo Ferrer}, + year={2022}, + eprint={2204.05799}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + +# License + +

+ This project is licensed under the Apache License - see the LICENSE file for details. +

\ No newline at end of file