forked from LPCIC/coq-elpi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelpi-builtin.elpi
1227 lines (855 loc) · 36.6 KB
/
elpi-builtin.elpi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Generated file, do not edit
% == Core builtins =====================================
% -- Logic --
pred true.
true.
pred fail.
pred false.
external pred (=) o:A, o:A. % unification
typeabbrev int (ctype "int").
typeabbrev string (ctype "string").
typeabbrev float (ctype "float").
pred (;) o:prop, o:prop.
(A ; _) :- A.
(_ ; B) :- B.
type (:-) prop -> prop -> prop.
type (:-) prop -> list prop -> prop.
type (,) variadic prop prop.
type uvar A.
type (as) A -> A -> A.
type (=>) prop -> prop -> prop.
type (=>) list prop -> prop -> prop.
% -- Control --
external pred !. % The cut operator
pred not i:prop.
not X :- X, !, fail.
not _.
% [declare_constraint C Key1 Key2...] declares C blocked
% on Key1 Key2 ... (variables, or lists thereof).
external type declare_constraint variadic any prop.
external pred print_constraints. % prints all constraints
% [halt ...] halts the program and print the terms
external type halt variadic any prop.
pred stop.
stop :- halt.
% -- Evaluation --
% [calc Expr Out] unifies Out with the value of Expr. It can be used in
% tandem with spilling, eg [f {calc (N + 1)}]
external pred calc i:A, o:A.
pred (is) o:A, i:A.
X is Y :- calc Y X.
type (-) A -> A -> A.
type (i-) int -> int -> int.
type (r-) float -> float -> float.
type (+) int -> int -> int.
type (+) float -> float -> float.
type (i+) int -> int -> int.
type (r+) float -> float -> float.
type (*) int -> int -> int.
type (*) float -> float -> float.
type (/) float -> float -> float.
type (mod) int -> int -> int.
type (div) int -> int -> int.
type (^) string -> string -> string.
type ~ int -> int.
type ~ float -> float.
type i~ int -> int.
type r~ float -> float.
type abs int -> int.
type abs float -> float.
type iabs int -> int.
type rabs float -> float.
type max int -> int -> int.
type max float -> float -> float.
type min int -> int -> int.
type min float -> float -> float.
type sqrt float -> float.
type sin float -> float.
type cos float -> float.
type arctan float -> float.
type ln float -> float.
type int_to_real int -> float.
type floor float -> int.
type ceil float -> int.
type truncate float -> int.
type size string -> int.
type chr int -> string.
type rhc string -> int.
type string_to_int string -> int.
type int_to_string int -> string.
type substring string -> int -> int -> string.
type real_to_string float -> string.
% -- Arithmetic tests --
% [lt_ X Y] checks if X < Y. Works for string, int and float
external pred lt_ i:A, i:A.
% [gt_ X Y] checks if X > Y. Works for string, int and float
external pred gt_ i:A, i:A.
% [le_ X Y] checks if X =< Y. Works for string, int and float
external pred le_ i:A, i:A.
% [ge_ X Y] checks if X >= Y. Works for string, int and float
external pred ge_ i:A, i:A.
type (<), (>), (=<), (>=) A -> A -> prop.
X > Y :- gt_ X Y.
X < Y :- lt_ X Y.
X =< Y :- le_ X Y.
X >= Y :- ge_ X Y.
type (i<), (i>), (i=<), (i>=) int -> int -> prop.
X i< Y :- lt_ X Y.
X i> Y :- gt_ X Y.
X i=< Y :- le_ X Y.
X i>= Y :- ge_ X Y.
type (r<), (r>), (r=<), (r>=) float -> float -> prop.
X r< Y :- lt_ X Y.
X r> Y :- gt_ X Y.
X r=< Y :- le_ X Y.
X r>= Y :- ge_ X Y.
type (s<), (s>), (s=<), (s>=) string -> string -> prop.
X s< Y :- lt_ X Y.
X s> Y :- gt_ X Y.
X s=< Y :- le_ X Y.
X s>= Y :- ge_ X Y.
% -- Standard data types (supported in the FFI) --
kind list type -> type.
type (::) X -> list X -> list X.
type ([]) list X.
% Boolean values: tt and ff since true and false are predicates
kind bool type.
type tt bool.
type ff bool.
% Pair: the constructor is pr, since ',' is for conjunction
kind pair type -> type -> type.
type pr A -> B -> pair A B.
pred fst i:pair A B, o:A.
fst (pr A _) A.
pred snd i:pair A B, o:B.
snd (pr _ B) B.
% The option type (aka Maybe)
kind option type -> type.
type none option A.
type some A -> option A.
% Result of a comparison
kind cmp type.
type eq cmp.
type lt cmp.
type gt cmp.
% Used in builtin variants that return Coq's error rather than failing
kind diagnostic type.
type ok diagnostic. % Success
type error string -> diagnostic. % Failure
% == Elpi builtins =====================================
% [dprint ...] prints raw terms (debugging)
external type dprint variadic any prop.
% [print ...] prints terms
external type print variadic any prop.
% Deprecated, use trace.counter
pred counter i:string, o:int.
counter C N :- trace.counter C N.
% [quote_syntax FileName QueryText QuotedProgram QuotedQuery] quotes the
% program from FileName and the QueryText. See elpi-quoted_syntax.elpi for
% the syntax tree
external pred quote_syntax i:string, i:string, o:list A, o:A.
typeabbrev loc (ctype "Loc.t").
% [loc.fields Loc File StartChar StopChar Line LineStartsAtChar] Decomposes
% a loc into its fields
external pred loc.fields i:loc, o:string, o:int, o:int, o:int, o:int.
% == Regular Expressions =====================================
% [rex.match Rex Subject] checks if Subject matches Rex. Matching is based
% on OCaml's Str library
external pred rex.match i:string, i:string.
% [rex.replace Rex Replacement Subject Out] Out is obtained by replacing all
% occurrences of Rex with Replacement in Subject. See also OCaml's
% Str.global_replace
external pred rex.replace i:string, i:string, i:string, o:string.
% [rex.split Rex Subject Out] Out is obtained by splitting Subject at all
% occurrences of Rex. See also OCaml's Str.split
external pred rex.split i:string, i:string, o:list string.
% Deprecated, use rex.match
pred rex_match i:string, i:string.
rex_match Rx S :- rex.match Rx S.
% Deprecated, use rex.replace
pred rex_replace i:string, i:string, i:string, o:string.
rex_replace Rx R S O :- rex.replace Rx R S O.
% Deprecated, use rex.split
pred rex_split i:string, i:string, o:list string.
rex_split Rx S L :- rex.split Rx S L.
% == Elpi nonlogical builtins =====================================
% Opaque ML data types
kind ctyp type.
type ctype string -> ctyp.
% [var V ...] checks if the term V is a variable. When used with tree
% arguments it relates an applied variable with its head and argument list.
external type var any -> variadic any prop.
% [prune V L] V is pruned to L (V is unified with a variable that only sees
% the list of names L)
external pred prune o:any, i:list any.
% [distinct_names L] checks if L is a list of distinct names. If L is the
% scope of a unification variable (its arguments, as per var predicate) then
% distinct_names L checks that such variable is in the Miller pattern
% fragment (L_\lambda)
external pred distinct_names i:list any.
% [same_var V1 V2] checks if the two terms V1 and V2 are the same variable,
% ignoring the arguments of the variables
external pred same_var i:A, i:A.
% [same_term T1 T2] checks if the two terms T1 and T2 are syntactically
% equal (no unification). It behaves differently than same_var since it
% recursively compares the arguments of the variables
external pred same_term i:A, i:A.
% Infix notation for same_term
pred (==) i:A, i:A.
X == Y :- same_term X Y.
% [cmp_term A B Cmp] Compares A and B. Only works if A and B are ground.
external pred cmp_term i:any, i:any, o:cmp.
% [name T ...] checks if T is a eigenvariable. When used with tree arguments
% it relates an applied name with its head and argument list.
external type name any -> variadic any prop.
% [constant T ...] checks if T is a (global) constant. When used with tree
% arguments it relates an applied constant with its head and argument list.
external type constant any -> variadic any prop.
external pred names % generates the list of eigenvariable
o:list any. % list of eigenvariables in order of age (young first)
external pred occurs % checks if the constant occurs in the term
i:any, % a constant (global or eigenvariable)
i:any. % a term
% [closed_term T] unify T with a variable that has no eigenvariables in
% scope
external pred closed_term o:any.
% [ground_term T] Checks if T contains unification variables
external pred ground_term i:any.
% [is_cdata T Ctype] checks if T is primitive of type Ctype, eg (ctype
% "int")
external pred is_cdata i:any, o:ctyp.
pred primitive? i:A, i:string.
primitive? X S :- is_cdata X (ctype S).
% [new_int N] unifies N with a different int every time it is called. Values
% of N are guaranteed to be incresing.
external pred new_int o:int.
% [findall_solution P L] finds all the solved instances of P and puts them
% in L
% in the order in which they are found. Instances can contain
% eigenvariables
% and unification variables.
external pred findall_solutions i:prop, o:list prop.
% Holds data across bracktracking; can only contain closed terms
typeabbrev safe (ctype "safe").
% [new_safe Safe] creates a safe: a store that persists across backtracking
external pred new_safe o:safe.
% [stash_in_safe Safe Data] stores Data in the Safe
external pred stash_in_safe i:safe, i:A.
% [open_safe Safe Data] retrieves the Data stored in Safe
external pred open_safe i:safe, o:list A.
% [if C T E] picks the first success of C then runs T (never E).
% if C has no success it runs E.
pred if i:prop, i:prop, i:prop.
if B T _ :- B, !, T.
if _ _ E :- E.
% [if2 C1 B1 C2 B2 E] like if but with 2 then branches (and one else branch).
pred if2 i:prop, i:prop, i:prop, i:prop, i:prop.
if2 G1 P1 _ _ _ :- G1, !, P1.
if2 _ _ G2 P2 _ :- G2, !, P2.
if2 _ _ _ _ E :- !, E.
% [random.init Seed] Initialize OCaml's PRNG with the given Seed
external pred random.init i:int.
% [random.self_init] Initialize OCaml's PRNG with some seed
external pred random.self_init .
% [random.int Bound N] unifies N with a random int between 0 and Bound
% (excluded)
external pred random.int i:int, o:int.
#line 0 "builtin_stdlib.elpi"
% == stdlib =======================================================
% Conventions:
% - all predicates declare a mode with some input arguments, unless...
% - predicates whose name ends with R are relations (work in any direction,
% that is all arguments are in output mode)
% - predicates whose name ends with ! do contain a cut and generate only the
% first result
% - all errors given by this library end up calling fatal-error[-w-data],
% override it in order to handle them differently
% - all debug prints by this library end up calling debug-print, override it
% in order to handle them differently
namespace std {
pred fatal-error i:string.
:name "default-fatal-error"
fatal-error Msg :- halt Msg.
pred fatal-error-w-data i:string, i:A.
:name "default-fatal-error-w-data"
fatal-error-w-data Msg Data :- halt Msg ":" Data.
pred debug-print i:string, i:A.
:name "default-debug-print"
debug-print Msg Data :- print Msg Data.
% -- Errors, Debugging, Hacks --
pred ignore-failure! i:prop.
ignore-failure! P :- P, !.
ignore-failure! _.
% [assert! C M] takes the first success of C or fails with message M
pred assert! i:prop, i:string.
assert! Cond Msg :- (Cond ; fatal-error-w-data Msg Cond), !.
% [assert-ok! C M] like assert! but the last argument of the predicate must
% be a diagnostic that is printed after M in case it is not ok
pred assert-ok! i:(diagnostic -> prop), i:string.
assert-ok! Cond Msg :- Cond Diagnostic, !, (Diagnostic = ok ; Diagnostic = error S, fatal-error-w-data Msg S), !.
assert-ok! _ Msg :- fatal-error-w-data Msg "no diagnostic returned".
% [spy P] traces the call to P, printing all success and the final failure
pred spy i:prop.
spy P :- trace.counter "run" NR, if (not(NR = 0)) (debug-print "run=" NR) true,
debug-print "----<<---- enter: " P,
P,
debug-print "---->>---- exit: " P.
spy P :- debug-print "---->>---- fail: " P, fail.
% [spy! P] traces the first call to P without leaving a choice point
pred spy! i:prop.
spy! P :- trace.counter "run" NR, if (not(NR = 0)) (debug-print "run=" NR) true,
debug-print "----<<---- enter: " P,
P,
debug-print "---->>---- exit: " P, !.
spy! P :- debug-print "---->>---- fail: " P, fail.
% to silence the type checker
pred unsafe-cast o:A, o:B.
unsafe-cast X X.
% -- List processing --
pred length i:list A, o:int.
length [_|L] N :- length L N1, N is N1 + 1.
length [] 0.
pred rev i:list A, o:list A.
rev L RL :- rev.aux L [] RL.
rev.aux [X|XS] ACC R :- rev.aux XS [X|ACC] R.
rev.aux [] L L.
pred last i:list A, o:A.
last [] _ :- fatal-error "last on empty list".
last [X] X :- !.
last [_|XS] R :- last XS R.
pred append i:list A, i:list A, o:list A.
append [X|XS] L [X|L1] :- append XS L L1 .
append [] L L .
pred appendR o:list A, o:list A, o:list A.
appendR [X|XS] L [X|L1] :- appendR XS L L1 .
appendR [] L L .
pred take i:int, i:list A, o:list A.
take 0 _ [] :- !.
take N [X|XS] [X|L] :- !, N1 is N - 1, take N1 XS L.
take _ _ _ :- fatal-error "take run out of list items".
pred take-last i:int, i:list A, o:list A.
take-last N L R :-
length L M,
D is M - N,
drop D L R.
pred drop i:int, i:list A, o:list A.
drop 0 L L :- !.
drop N [_|XS] L :- !, N1 is N - 1, drop N1 XS L.
drop _ _ _ :- fatal-error "drop run out of list items".
pred drop-last i:int, i:list A, o:list A.
drop-last N L R :-
length L M, I is M - N, take I L R.
pred split-at i:int, i:list A, o:list A, o:list A.
split-at 0 L [] L :- !.
split-at N [X|XS] [X|LN] LM :- !, N1 is N - 1, split-at N1 XS LN LM.
split-at _ _ _ _ :- fatal-error "split-at run out of list items".
pred fold i:list B, i:A, i:(B -> A -> A -> prop), o:A.
fold [] A _ A.
fold [X|XS] A F R :- F X A A1, fold XS A1 F R.
pred fold2 i:list C, i:list B, i:A, i:(C -> B -> A -> A -> prop), o:A.
fold2 [] [_|_] _ _ _ :- fatal-error "fold2 on lists of different length".
fold2 [_|_] [] _ _ _ :- fatal-error "fold2 on lists of different length".
fold2 [] [] A _ A.
fold2 [X|XS] [Y|YS] A F R :- F X Y A A1, fold2 XS YS A1 F R.
pred map i:list A, i:(A -> B -> prop), o:list B.
map [] _ [].
map [X|XS] F [Y|YS] :- F X Y, map XS F YS.
pred map-i i:list A, i:(int -> A -> B -> prop), o:list B.
map-i L F R :- map-i.aux L 0 F R.
map-i.aux [] _ _ [].
map-i.aux [X|XS] N F [Y|YS] :- F N X Y, M is N + 1, map-i.aux XS M F YS.
pred map-filter i:list A, i:(A -> B -> prop), o:list B.
map-filter [] _ [].
map-filter [X|XS] F [Y|YS] :- F X Y, !, map-filter XS F YS.
map-filter [_|XS] F YS :- map-filter XS F YS.
:index(1 1)
pred map2 i:list A, i:list B, i:(A -> B -> C -> prop), o:list C.
map2 [] [_|_] _ _ :- fatal-error "map2 on lists of different length".
map2 [_|_] [] _ _ :- fatal-error "map2 on lists of different length".
map2 [] [] _ [].
map2 [X|XS] [Y|YS] F [Z|ZS] :- F X Y Z, map2 XS YS F ZS.
pred map2-filter i:list A, i:list B, i:(A -> B -> C -> prop), o:list C.
map2-filter [] [_|_] _ _ :- fatal-error "map2-filter on lists of different length".
map2-filter [_|_] [] _ _ :- fatal-error "map2-filter on lists of different length".
map2-filter [] [] _ [].
map2-filter [X|XS] [Y|YS] F [Z|ZS] :- F X Y Z, !, map2-filter XS YS F ZS.
map2-filter [_|XS] [_|YS] F ZS :- map2-filter XS YS F ZS.
pred map-ok i:list A, i:(A -> B -> diagnostic -> prop), o:list A, o:diagnostic.
map-ok [X|L] P [Y|YS] S :- P X Y S0, if (S0 = ok) (map-ok L P YS S) (S = S0).
map-ok [] _ [] ok.
pred fold-map i:list A, i:B, i:(A -> B -> C -> B -> prop), o:list C, o:B.
fold-map [] A _ [] A.
fold-map [X|XS] A F [Y|YS] A2 :- F X A Y A1, fold-map XS A1 F YS A2.
pred omap i:option A, i:(A -> B -> prop), o:option B.
omap none _ none.
omap (some X) F (some Y) :- F X Y.
% [nth N L X] picks in X the N-th element of L (L must be of length > N)
pred nth i:int, i:list A, o:A.
nth 0 [X|_ ] R :- !, X = R.
nth N [_|XS] R :- N > 0, !, N1 is N - 1, nth N1 XS R.
nth N _ _ :- N < 0, !, fatal-error "nth got a negative index".
nth _ _ _ :- fatal-error "nth run out of list items".
% [lookup L K V] sees L as a map from K to V
pred lookup i:list (pair A B), i:A, o:B.
lookup [pr X Y|_] X Y.
lookup [_|LS] X Y :- lookup LS X Y.
% [lookup! L K V] sees L as a map from K to V, stops at the first binding
pred lookup! i:list (pair A B), i:A, o:B.
lookup! [pr X Y|_] X Y :- !.
lookup! [_|LS] X Y :- lookup! LS X Y.
% [mem! L X] succeeds once if X occurs inside L
pred mem! i:list A, o:A.
mem! [X|_] X :- !.
mem! [_|L] X :- mem! L X.
% [mem L X] succeeds every time if X occurs inside L
pred mem i:list A, o:A.
mem [X|_] X.
mem [_|L] X :- mem L X.
pred exists i:list A, i:(A -> prop).
exists [X|_] P :- P X.
exists [_|L] P :- exists L P.
pred exists2 i:list A, i:list B, i:(A -> B -> prop).
exists2 [] [_|_] _ :- fatal-error "exists2 on lists of different length".
exists2 [_|_] [] _ :- fatal-error "exists2 on lists of different length".
exists2 [X|_] [Y|_] P :- P X Y.
exists2 [_|L] [_|M] P :- exists2 L M P.
pred forall i:list A, i:(A -> prop).
forall [] _.
forall [X|L] P :- P X, forall L P.
pred forall-ok i:list A, i:(A -> diagnostic -> prop), o:diagnostic.
forall-ok [X|L] P S :- P X S0, if (S0 = ok) (forall-ok L P S) (S = S0).
forall-ok [] _ ok.
pred forall2 i:list A, i:list B, i:(A -> B -> prop).
forall2 [] [_|_] _ :- fatal-error "forall2 on lists of different length".
forall2 [_|_] [] _ :- fatal-error "forall2 on lists of different length".
forall2 [X|XS] [Y|YS] P :- P X Y, forall2 XS YS P.
forall2 [] [] _.
pred filter i:list A, i:(A -> prop), o:list A.
filter [] _ [].
filter [X|L] P R :- if (P X) (R = X :: L1) (R = L1), filter L P L1.
pred zip i:list A, i:list B, o:list (pair A B).
zip [_|_] [] _ :- fatal-error "zip on lists of different length".
zip [] [_|_] _ :- fatal-error "zip on lists of different length".
zip [X|LX] [Y|LY] [pr X Y|LR] :- zip LX LY LR.
zip [] [] [].
pred unzip i:list (pair A B), o:list A, o:list B.
unzip [] [] [].
unzip [pr X Y|L] [X|LX] [Y|LY] :- unzip L LX LY.
pred flatten i:list (list A), o:list A.
flatten [X|LS] R :- flatten LS LS', append X LS' R.
flatten [] [].
pred null i:list A.
null [].
pred iota i:int, o:list int.
iota N L :- iota.aux 0 N L.
iota.aux X X [] :- !.
iota.aux N X [N|R] :- M is N + 1, iota.aux M X R.
% [intersperse X L R] R is [L0, X, ..., X, LN]
:index(_ 1)
pred intersperse i:A, i:list A, o:list A.
intersperse _ [] [].
intersperse _ [X] [X] :- !.
intersperse Sep [X|XS] [X,Sep|YS] :- intersperse Sep XS YS.
% -- Misc --
pred flip i:(A -> B -> prop), i:B, i:A.
flip P X Y :- P Y X.
pred time i:prop, o:float.
time P T :- gettimeofday Before, P, gettimeofday After, T is After - Before.
pred do! i:list prop.
do! [].
do! [P|PS] :- P, !, do! PS.
:index(_ 1)
pred do-ok! o:diagnostic, i:list (diagnostic -> prop).
do-ok! ok [].
do-ok! S [P|PS] :- P S0, !, if (S0 = ok) (do-ok! S PS) (S = S0).
pred lift-ok i:prop, i:string, o:diagnostic.
lift-ok P Msg R :- (P, R = ok; R = error Msg).
pred spy-do! i:list prop.
spy-do! L :- map L (x\y\y = spy x) L1, do! L1.
pred while-ok-do! i:diagnostic, i:list (diagnostic -> prop), o:diagnostic.
while-ok-do! (error _ as E) _ E.
while-ok-do! ok [] ok.
while-ok-do! ok [P|PS] R :- P C, !, while-ok-do! C PS R.
pred any->string i:A, o:string.
any->string X Y :- term_to_string X Y.
pred max i:A, i:A, o:A.
max N M N :- N >= M, !.
max _ M M.
% [findall P L] L is the list [P1,P2,P3..] where each Pi is a solution to P.
pred findall i:prop, o:list prop.
findall P L :- findall_solutions P L.
}
% [std.string.concat Separator Items Result] concatenates Items
% interspersing Separator
external pred std.string.concat i:string, i:list string, o:string.
% CAVEAT: the type parameter of std.string.map must be a closed term
kind std.string.map type -> type.
% [std.string.map.empty M] The empty map
external pred std.string.map.empty o:std.string.map A.
% [std.string.map.mem S M] Checks if S is bound in M
external pred std.string.map.mem i:string, i:std.string.map A.
% [std.string.map.add S V M M1] M1 is M where V is bound to S
external pred std.string.map.add i:string, i:A, i:std.string.map A,
o:std.string.map A.
% [std.string.map.remove S M M1] M1 is M where S is unbound
external pred std.string.map.remove i:string, i:std.string.map A,
o:std.string.map A.
% [std.string.map.find S M V] V is the binding of S in M
external pred std.string.map.find i:string, i:std.string.map A, o:A.
% [std.string.map.bindings M L] L is M transformed into an associative list
external pred std.string.map.bindings i:std.string.map A,
o:list (pair string A).
% CAVEAT: the type parameter of std.int.map must be a closed term
kind std.int.map type -> type.
% [std.int.map.empty M] The empty map
external pred std.int.map.empty o:std.int.map A.
% [std.int.map.mem S M] Checks if S is bound in M
external pred std.int.map.mem i:int, i:std.int.map A.
% [std.int.map.add S V M M1] M1 is M where V is bound to S
external pred std.int.map.add i:int, i:A, i:std.int.map A,
o:std.int.map A.
% [std.int.map.remove S M M1] M1 is M where S is unbound
external pred std.int.map.remove i:int, i:std.int.map A, o:std.int.map A.
% [std.int.map.find S M V] V is the binding of S in M
external pred std.int.map.find i:int, i:std.int.map A, o:A.
% [std.int.map.bindings M L] L is M transformed into an associative list
external pred std.int.map.bindings i:std.int.map A, o:list (pair int A).
% CAVEAT: the type parameter of std.loc.map must be a closed term
kind std.loc.map type -> type.
% [std.loc.map.empty M] The empty map
external pred std.loc.map.empty o:std.loc.map A.
% [std.loc.map.mem S M] Checks if S is bound in M
external pred std.loc.map.mem i:loc, i:std.loc.map A.
% [std.loc.map.add S V M M1] M1 is M where V is bound to S
external pred std.loc.map.add i:loc, i:A, i:std.loc.map A,
o:std.loc.map A.
% [std.loc.map.remove S M M1] M1 is M where S is unbound
external pred std.loc.map.remove i:loc, i:std.loc.map A, o:std.loc.map A.
% [std.loc.map.find S M V] V is the binding of S in M
external pred std.loc.map.find i:loc, i:std.loc.map A, o:A.
% [std.loc.map.bindings M L] L is M transformed into an associative list
external pred std.loc.map.bindings i:std.loc.map A, o:list (pair loc A).
kind std.string.set type.
% [std.string.set.empty A] The empty set
external pred std.string.set.empty o:std.string.set.
% [std.string.set.mem Elem A] Checks if Elem is in a
external pred std.string.set.mem i:string, i:std.string.set.
% [std.string.set.add Elem A B] B is A union {Elem}
external pred std.string.set.add i:string, i:std.string.set,
o:std.string.set.
% [std.string.set.remove Elem A B] B is A \ {Elem}
external pred std.string.set.remove i:string, i:std.string.set,
o:std.string.set.
% [std.string.set.union A B X] X is A union B
external pred std.string.set.union i:std.string.set, i:std.string.set,
o:std.string.set.
% [std.string.set.inter A B X] X is A intersection B
external pred std.string.set.inter i:std.string.set, i:std.string.set,
o:std.string.set.
% [std.string.set.diff A B X] X is A \ B
external pred std.string.set.diff i:std.string.set, i:std.string.set,
o:std.string.set.
% [std.string.set.equal A B] tests A and B for equality
external pred std.string.set.equal i:std.string.set, i:std.string.set.
% [std.string.set.subset A B] tests if A is a subset of B
external pred std.string.set.subset i:std.string.set, i:std.string.set.
% [std.string.set.elements M L] L is M transformed into list
external pred std.string.set.elements i:std.string.set, o:list string.
% [std.string.set.cardinal M N] N is the number of elements of M
external pred std.string.set.cardinal i:std.string.set, o:int.
kind std.int.set type.
% [std.int.set.empty A] The empty set
external pred std.int.set.empty o:std.int.set.
% [std.int.set.mem Elem A] Checks if Elem is in a
external pred std.int.set.mem i:int, i:std.int.set.
% [std.int.set.add Elem A B] B is A union {Elem}
external pred std.int.set.add i:int, i:std.int.set, o:std.int.set.
% [std.int.set.remove Elem A B] B is A \ {Elem}
external pred std.int.set.remove i:int, i:std.int.set, o:std.int.set.
% [std.int.set.union A B X] X is A union B
external pred std.int.set.union i:std.int.set, i:std.int.set,
o:std.int.set.
% [std.int.set.inter A B X] X is A intersection B
external pred std.int.set.inter i:std.int.set, i:std.int.set,
o:std.int.set.
% [std.int.set.diff A B X] X is A \ B
external pred std.int.set.diff i:std.int.set, i:std.int.set,
o:std.int.set.
% [std.int.set.equal A B] tests A and B for equality
external pred std.int.set.equal i:std.int.set, i:std.int.set.
% [std.int.set.subset A B] tests if A is a subset of B
external pred std.int.set.subset i:std.int.set, i:std.int.set.
% [std.int.set.elements M L] L is M transformed into list
external pred std.int.set.elements i:std.int.set, o:list int.
% [std.int.set.cardinal M N] N is the number of elements of M
external pred std.int.set.cardinal i:std.int.set, o:int.
kind std.loc.set type.
% [std.loc.set.empty A] The empty set
external pred std.loc.set.empty o:std.loc.set.
% [std.loc.set.mem Elem A] Checks if Elem is in a
external pred std.loc.set.mem i:loc, i:std.loc.set.
% [std.loc.set.add Elem A B] B is A union {Elem}
external pred std.loc.set.add i:loc, i:std.loc.set, o:std.loc.set.
% [std.loc.set.remove Elem A B] B is A \ {Elem}
external pred std.loc.set.remove i:loc, i:std.loc.set, o:std.loc.set.
% [std.loc.set.union A B X] X is A union B
external pred std.loc.set.union i:std.loc.set, i:std.loc.set,
o:std.loc.set.
% [std.loc.set.inter A B X] X is A intersection B
external pred std.loc.set.inter i:std.loc.set, i:std.loc.set,
o:std.loc.set.
% [std.loc.set.diff A B X] X is A \ B
external pred std.loc.set.diff i:std.loc.set, i:std.loc.set,
o:std.loc.set.
% [std.loc.set.equal A B] tests A and B for equality
external pred std.loc.set.equal i:std.loc.set, i:std.loc.set.
% [std.loc.set.subset A B] tests if A is a subset of B
external pred std.loc.set.subset i:std.loc.set, i:std.loc.set.
% [std.loc.set.elements M L] L is M transformed into list
external pred std.loc.set.elements i:std.loc.set, o:list loc.
% [std.loc.set.cardinal M N] N is the number of elements of M
external pred std.loc.set.cardinal i:std.loc.set, o:int.
#line 0 "builtin_map.elpi"
kind std.map type -> type -> type.
type std.map std.map.private.map K V -> (K -> K -> cmp -> prop) -> std.map K V.
namespace std.map {
% [make Eq Ltn M] builds an empty map M where keys are compared using Eq and Ltn
pred make i:(K -> K -> cmp -> prop), o:std.map K V.
make Cmp (std.map private.empty Cmp).
% [find K M V] looks in M for the value V associated to K
pred find i:K, i:std.map K V, o:V.
find K (std.map M Cmp) V :- private.find M Cmp K V.
% [add K V M M1] M1 is M where K is bound to V
pred add i:K, i:V, i:std.map K V, o:std.map K V.
add K V (std.map M Cmp) (std.map M1 Cmp) :- private.add M Cmp K V M1.
% [remove K M M1] M1 is M where K is unbound
pred remove i:K, i:std.map K V, o:std.map K V.
remove K (std.map M Cmp) (std.map M1 Cmp) :- private.remove M Cmp K M1.
% [bindings M L] L is the key-value pairs in increasing order
pred bindings i:std.map K V, o:list (pair K V).
bindings (std.map M _) L :- private.bindings M [] L.
namespace private {
% Taken from OCaml's map.ml
kind map type -> type -> type.
type empty map K V.
type node map K V -> K -> V -> map K V -> int -> map K V.
pred height i:map K V, o:int.
height empty 0.
height (node _ _ _ _ H) H.
pred create i:map K V, i:K, i:V, i:map K V, o:map K V.
create L K V R (node L K V R H) :- H is {std.max {height L} {height R}} + 1.
pred bal i:map K V, i:K, i:V, i:map K V, o:map K V.
bal L K V R T :-
height L HL,
height R HR,
HL2 is HL + 2,
HR2 is HR + 2,
bal.aux HL HR HL2 HR2 L K V R T.
bal.aux HL _ _ HR2 (node LL LV LD LR _) X D R T :-
HL > HR2, {height LL} >= {height LR}, !,
create LL LV LD {create LR X D R} T.
bal.aux HL _ _ HR2 (node LL LV LD (node LRL LRV LRD LRR _) _) X D R T :-
HL > HR2, !,
create {create LL LV LD LRL} LRV LRD {create LRR X D R} T.
bal.aux _ HR HL2 _ L X D (node RL RV RD RR _) T :-
HR > HL2, {height RR} >= {height RL}, !,
create {create L X D RL} RV RD RR T.
bal.aux _ HR HL2 _ L X D (node (node RLL RLV RLD RLR _) RV RD RR _) T :-
HR > HL2, !,
create {create L X D RLL} RLV RLD {create RLR RV RD RR} T.
bal.aux _ _ _ _ L K V R T :- create L K V R T.
pred add i:map K V, i:(K -> K -> cmp -> prop), i:K, i:V, o:map K V.
add empty _ K V T :- create empty K V empty T.
add (node _ X _ _ _ as M) Cmp X1 XD M1 :- Cmp X1 X E, add.aux E M Cmp X1 XD M1.
add.aux eq (node L _ _ R H) _ X XD T :- T = node L X XD R H.
add.aux lt (node L V D R _) Cmp X XD T :- bal {add L Cmp X XD} V D R T.
add.aux gt (node L V D R _) Cmp X XD T :- bal L V D {add R Cmp X XD} T.
pred find i:map K V, i:(K -> K -> cmp -> prop), i:K, o:V.
find (node L K1 V1 R _) Cmp K V :- Cmp K K1 E, find.aux E Cmp L R V1 K V.
find.aux eq _ _ _ V _ V.
find.aux lt Cmp L _ _ K V :- find L Cmp K V.
find.aux gt Cmp _ R _ K V :- find R Cmp K V.
pred remove-min-binding i:map K V, o:map K V.
remove-min-binding (node empty _ _ R _) R :- !.
remove-min-binding (node L V D R _) X :- bal {remove-min-binding L} V D R X.
pred min-binding i:map K V, o:K, o:V.
min-binding (node empty V D _ _) V D :- !.
min-binding (node L _ _ _ _) V D :- min-binding L V D.
pred merge i:map K V, i:map K V, o:map K V.
merge empty X X :- !.
merge X empty X :- !.
merge M1 M2 R :-
min-binding M2 X D,
bal M1 X D {remove-min-binding M2} R.
pred remove i:map K V, i:(K -> K -> cmp -> prop), i:K, o:map K V.
remove empty _ _ empty :- !.
remove (node L V D R _) Cmp X M :- Cmp X V E, remove.aux E Cmp L R V D X M.
remove.aux eq _ L R _ _ _ M :- merge L R M.
remove.aux lt Cmp L R V D X M :- bal {remove L Cmp X} V D R M.
remove.aux gt Cmp L R V D X M :- bal L V D {remove R Cmp X} M.
pred bindings i:map K V, i:list (pair K V), o:list (pair K V).
bindings empty X X.