From 65441cde69459dc94f62e819c3ed6ad2dcddb6e0 Mon Sep 17 00:00:00 2001 From: Paul Kienzle Date: Thu, 5 Dec 2024 19:38:57 -0500 Subject: [PATCH] update readthedocs configuration --- periodictable/nsf.py | 52 ++++++++++++++++++++++---------------------- 1 file changed, 26 insertions(+), 26 deletions(-) diff --git a/periodictable/nsf.py b/periodictable/nsf.py index 4dc6040..a240c5b 100644 --- a/periodictable/nsf.py +++ b/periodictable/nsf.py @@ -817,16 +817,16 @@ def neutron_scattering(compound, *, density=None, The scattering potential can be expressed as a scattering length density (SLD). This is the number density of the scatterers - (per $\AA^3$) times their scattering lengths, scaled to - $10^6/\AA^2$ (with $1/\AA^2$ = $10^{5} \mathrm{fm}/\AA^3$). + (per |Ang^3|) times their scattering lengths, scaled to + |1e-6/Ang^2| (with |1/Ang^2| = $10^{5}$ fm/|Ang^3|). Following the convention of Sears (1992), we define sld as $\rho = \rho_{\rm re} - i \rho_{\rm im}$. .. math:: - \rho_{\rm re} (10^6 / \AA^2) &= 10 N \mathrm{Re}(b_c) \\ - \rho_{\rm im} (10^6 / \AA^2) &= -10 N \mathrm{Im}(b_c) \\ - \rho_{\rm inc} (10^6 / \AA^2) &= 10 N b_i + \rho_{\rm re} (10^6 / Å^2) &= 10 N \mathrm{Re}(b_c) \\ + \rho_{\rm im} (10^6 / Å^2) &= -10 N \mathrm{Im}(b_c) \\ + \rho_{\rm inc} (10^6 / Å^2) &= 10 N b_i Similarly, the macroscopic scattering cross section for the sample includes number density: @@ -871,39 +871,39 @@ def neutron_scattering(compound, *, density=None, .. math:: - \rho_{\rm re}\,(\mu/\AA^2) &= (N/\AA^3) + \rho_{\rm re}\,(\mu/Å^2) &= (N/Å^3) \, (\mathrm{Re}(b_c)\,{\rm fm}) - \, (10^{-5} \AA/{\rm\,fm}) + \, (10^{-5} Å/{\rm\,fm}) \, (10^6\,\mu) \\ - \rho_{\rm im}\,(\mu/\AA^2) &= (N/\AA^3) + \rho_{\rm im}\,(\mu/Å^2) &= (N/Å^3) \, (\sigma_a\,{\rm barn}) - \, (10^{-8}\,\AA^2/{\rm barn}) / (2 \lambda\, \AA) + \, (10^{-8}\,Å^2/{\rm barn}) / (2 \lambda\, Å) \, (10^6\,\mu) \\ - &= (N/\AA^3) + &= (N/Å^3) \, (-\mathrm{Im}(b_c)\,{\rm fm}) - \, (10^{-5} \AA/{\rm\,fm}) + \, (10^{-5} Å/{\rm\,fm}) \, (10^6\,\mu) \\ - \rho_{\rm inc}\,(\mu/\AA^2) &= (N/\AA^3) + \rho_{\rm inc}\,(\mu/Å^2) &= (N/Å^3) \, \sqrt{(\sigma_i\, {\rm barn})/(4 \pi) \, (100\, {\rm fm}^2/{\rm barn})} - \, (10^{-5}\, \AA/{\rm fm}) + \, (10^{-5}\, Å/{\rm fm}) \, (10^6\, \mu) \\ - \Sigma_{\rm coh}\,(1/{\rm cm}) &= (N/\AA^3) + \Sigma_{\rm coh}\,(1/{\rm cm}) &= (N/Å^3) \, (\sigma_c\, {\rm barn}) - \, (10^{-8}\, \AA^2/{\rm barn}) - \, (10^8\, \AA/{\rm cm}) \\ - \Sigma_{\rm inc}\,(1/{\rm cm}) &= (N/\AA^3) + \, (10^{-8}\, Å^2/{\rm barn}) + \, (10^8\, Å/{\rm cm}) \\ + \Sigma_{\rm inc}\,(1/{\rm cm}) &= (N/Å^3) \,(\sigma_i\, {\rm barn}) - \, (10^{-8}\, \AA^2/{\rm barn}) - \, (10^8\, \AA/{\rm cm}) \\ - \Sigma_{\rm abs}\,(1/{\rm cm}) &= (N/\AA^3) + \, (10^{-8}\, Å^2/{\rm barn}) + \, (10^8\, Å/{\rm cm}) \\ + \Sigma_{\rm abs}\,(1/{\rm cm}) &= (N/Å^3) \,(\sigma_a\,{\rm barn}) - \, (10^{-8}\, \AA^2/{\rm barn}) - \, (10^8\, \AA/{\rm cm}) \\ - \Sigma_{\rm s}\,(1/{\rm cm}) &= (N/\AA^3) + \, (10^{-8}\, Å^2/{\rm barn}) + \, (10^8\, Å/{\rm cm}) \\ + \Sigma_{\rm s}\,(1/{\rm cm}) &= (N/Å^3) \,(\sigma_s\,{\rm barn}) - \, (10^{-8}\, \AA^2/{\rm barn}) - \, (10^8\, \AA/{\rm cm}) \\ + \, (10^{-8}\, Å^2/{\rm barn}) + \, (10^8\, Å/{\rm cm}) \\ t_u\,({\rm cm}) &= 1/(\Sigma_{\rm s}\, 1/{\rm cm} \,+\, \Sigma_{\rm abs}\, 1/{\rm cm}) """ @@ -1860,7 +1860,7 @@ def absorption_comparison_table(table=None, tol=None): \sigma_a = -2 \lambda \mathrm{Im}(b_c) \cdot 1000 - The wavelength $\lambda = 1.798 \AA$ is the neutron wavelength at which + The wavelength $\lambda = 1.798$ |Ang| is the neutron wavelength at which the absorption is tallied. The factor of 1000 transforms from |Ang|\ |cdot|\ fm to barn.