diff --git a/python/cugraph/cugraph/community/induced_subgraph.py b/python/cugraph/cugraph/community/induced_subgraph.py index 3a901199b01..c10241afa61 100644 --- a/python/cugraph/cugraph/community/induced_subgraph.py +++ b/python/cugraph/cugraph/community/induced_subgraph.py @@ -1,4 +1,4 @@ -# Copyright (c) 2019-2023, NVIDIA CORPORATION. +# Copyright (c) 2019-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -35,7 +35,7 @@ # FIXME: Move this function to the utility module so that it can be # shared by other algos def ensure_valid_dtype(input_graph: Graph, input: cudf.Series, input_name: str): - vertex_dtype = input_graph.edgelist.edgelist_df.dtypes[0] + vertex_dtype = input_graph.edgelist.edgelist_df.dtypes.iloc[0] input_dtype = input.dtype if input_dtype != vertex_dtype: warning_msg = ( diff --git a/python/cugraph/cugraph/tests/community/test_induced_subgraph_mg.py b/python/cugraph/cugraph/tests/community/test_induced_subgraph_mg.py index 8d80611a54c..45ec8eca0e8 100644 --- a/python/cugraph/cugraph/tests/community/test_induced_subgraph_mg.py +++ b/python/cugraph/cugraph/tests/community/test_induced_subgraph_mg.py @@ -1,4 +1,4 @@ -# Copyright (c) 2022-2023, NVIDIA CORPORATION. +# Copyright (c) 2022-2024, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at @@ -15,14 +15,12 @@ import pytest -import cudf -from cudf.testing.testing import assert_frame_equal -import dask_cudf import cugraph import cugraph.dask as dcg -from cugraph.testing import utils +import dask_cudf +from cudf.testing.testing import assert_frame_equal from cugraph.dask.common.mg_utils import is_single_gpu -from pylibcugraph.testing import gen_fixture_params_product +from cugraph.datasets import karate, dolphins, email_Eu_core # ============================================================================= @@ -34,101 +32,47 @@ def setup_function(): gc.collect() -IS_DIRECTED = [True, False] -NUM_SEEDS = [2, 5, 10, 20] +# ============================================================================= +# Parameters +# ============================================================================= -# FIXME: This parameter will be tested in the next release when updating the -# SG implementation +DATASETS = [karate, dolphins, email_Eu_core] +IS_DIRECTED = [True, False] +NUM_VERTICES = [2, 5, 10, 20] OFFSETS = [None] - # ============================================================================= -# Pytest fixtures +# Helper functions # ============================================================================= -datasets = utils.DATASETS_UNDIRECTED + [ - utils.RAPIDS_DATASET_ROOT_DIR_PATH / "email-Eu-core.csv" -] - -fixture_params = gen_fixture_params_product( - (datasets, "graph_file"), - (IS_DIRECTED, "directed"), - (NUM_SEEDS, "num_seeds"), - (OFFSETS, "offsets"), -) - - -@pytest.fixture(scope="module", params=fixture_params) -def input_combo(request): - """ - Simply return the current combination of params as a dictionary for use in - tests or other parameterized fixtures. - """ - parameters = dict( - zip(("graph_file", "directed", "seeds", "offsets"), request.param) - ) - - return parameters +def get_sg_graph(dataset, directed): + G = dataset.get_graph(create_using=cugraph.Graph(directed=directed)) -@pytest.fixture(scope="module") -def input_expected_output(input_combo): - """ - This fixture returns the inputs and expected results from the induced_subgraph algo. - (based on cuGraph subgraph) which can be used for validation. - """ + return G - input_data_path = input_combo["graph_file"] - directed = input_combo["directed"] - num_seeds = input_combo["seeds"] - # FIXME: This parameter is not tested - # offsets= input_combo["offsets"] - G = utils.generate_cugraph_graph_from_file( - input_data_path, directed=directed, edgevals=True - ) - - # Sample k vertices from the cuGraph graph - # FIXME: Leverage the method 'select_random_vertices' instead - srcs = G.view_edge_list()["0"] - dsts = G.view_edge_list()["1"] - vertices = cudf.concat([srcs, dsts]).drop_duplicates() - vertices = vertices.sample(num_seeds, replace=True).astype("int32") - - # print randomly sample n seeds from the graph - print("\nvertices: \n", vertices) - - input_combo["vertices"] = vertices - - sg_induced_subgraph, _ = cugraph.induced_subgraph(G, vertices=vertices) - - # Save the results back to the input_combo dictionary to prevent redundant - # cuGraph runs. Other tests using the input_combo fixture will look for - # them, and if not present they will have to re-run the same cuGraph call. - - input_combo["sg_cugraph_results"] = sg_induced_subgraph - chunksize = dcg.get_chunksize(input_data_path) +def get_mg_graph(dataset, directed): + input_data_path = dataset.get_path() + blocksize = dcg.get_chunksize(input_data_path) ddf = dask_cudf.read_csv( input_data_path, - chunksize=chunksize, - delimiter=" ", - names=["src", "dst", "value"], - dtype=["int32", "int32", "float32"], + blocksize=blocksize, + delimiter=dataset.metadata["delim"], + names=dataset.metadata["col_names"], + dtype=dataset.metadata["col_types"], ) - dg = cugraph.Graph(directed=directed) dg.from_dask_cudf_edgelist( ddf, source="src", destination="dst", - edge_attr="value", + edge_attr="wgt", renumber=True, store_transposed=True, ) - input_combo["MGGraph"] = dg - - return input_combo + return dg # ============================================================================= @@ -138,28 +82,38 @@ def input_expected_output(input_combo): @pytest.mark.mg @pytest.mark.skipif(is_single_gpu(), reason="skipping MG testing on Single GPU system") -def test_mg_induced_subgraph(dask_client, benchmark, input_expected_output): - - dg = input_expected_output["MGGraph"] - vertices = input_expected_output["vertices"] +@pytest.mark.parametrize("dataset", DATASETS) +@pytest.mark.parametrize("is_directed", IS_DIRECTED) +@pytest.mark.parametrize("num_vertices", NUM_VERTICES) +@pytest.mark.parametrize("offsets", OFFSETS) +def test_mg_induced_subgraph( + dask_client, benchmark, dataset, is_directed, num_vertices, offsets +): + # Create SG and MG Graphs + g = get_sg_graph(dataset, is_directed) + dg = get_mg_graph(dataset, is_directed) + + # Sample N random vertices to create the induced subgraph + vertices = g.select_random_vertices(num_vertices=num_vertices) + # print randomly sample n seeds from the graph + print("\nvertices: \n", vertices) + sg_induced_subgraph, _ = cugraph.induced_subgraph(g, vertices=vertices) result_induced_subgraph = benchmark( dcg.induced_subgraph, dg, vertices, - input_expected_output["offsets"], + offsets, ) - mg_df, mg_offsets = result_induced_subgraph - + # FIXME: This parameter is not yet tested # mg_offsets = mg_offsets.compute().reset_index(drop=True) + mg_df, mg_offsets = result_induced_subgraph - sg = input_expected_output["sg_cugraph_results"] - - if mg_df is not None and sg is not None: + if mg_df is not None and sg_induced_subgraph is not None: # FIXME: 'edges()' or 'view_edgelist()' takes half the edges out if # 'directed=False'. - sg_result = sg.input_df + sg_result = sg_induced_subgraph.input_df sg_df = sg_result.sort_values(["src", "dst"]).reset_index(drop=True) mg_df = mg_df.compute().sort_values(["src", "dst"]).reset_index(drop=True) @@ -170,5 +124,5 @@ def test_mg_induced_subgraph(dask_client, benchmark, input_expected_output): # There is no edges between the vertices provided # FIXME: Once k-hop neighbors is implemented, find one hop neighbors # of all the vertices and ensure that there is None - assert sg is None + assert sg_induced_subgraph is None assert mg_df is None