-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
223 lines (169 loc) · 10.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.9
import os
import sys
import json
import random
import copy
import pickle
import numpy as np
import pandas as pd
import medmnist
from medmnist import INFO
import torch
import torch.nn.functional as F
from torchvision import datasets, transforms
from models import get_model
from fl_methods import get_fl_method_class
from query_strategies import random_query_samples, algo_query_samples
from util.args import args_parser
from util.path import set_result_dir, set_dict_user_path
from util.data_simulator import shard_balance, dir_balance
from util.longtail_dataset import IMBALANCECIFAR10, IMBALANCECIFAR100
from util.misc import adjust_learning_rate
def get_dataset(args):
MEAN = {'mnist': (0.1307,), 'fmnist': (0.5,), 'emnist': (0.5,), 'svhn': [0.4376821, 0.4437697, 0.47280442],
'cifar10': [0.485, 0.456, 0.406], 'cifar100': [0.507, 0.487, 0.441], 'pathmnist': (0.5,),
'octmnist': (0.5,), 'organamnist': (0.5,), 'dermamnist': (0.5,), 'bloodmnist': (0.5,)}
STD = {'mnist': (0.3081,), 'fmnist': (0.5,), 'emnist': (0.5,), 'svhn': [0.19803012, 0.20101562, 0.19703614],
'cifar10': [0.229, 0.224, 0.225], 'cifar100': [0.267, 0.256, 0.276], 'pathmnist': (0.5,),
'octmnist': (0.5,), 'organamnist': (0.5,), 'dermamnist': (0.5,), 'bloodmnist': (0.5,)}
if 'lt' not in args.dataset:
noaug = [transforms.ToTensor(),
transforms.Normalize(mean=MEAN[args.dataset], std=STD[args.dataset])]
weakaug = [transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=MEAN[args.dataset], std=STD[args.dataset])]
trans_noaug = transforms.Compose(noaug)
trans_weakaug = transforms.Compose(weakaug)
# standard benchmarks
print('Load Dataset {}'.format(args.dataset))
if args.dataset == 'mnist':
dataset_train = datasets.MNIST(args.data_dir, train=True, download=True, transform=trans_weakaug)
dataset_query = datasets.MNIST(args.data_dir, train=True, download=True, transform=trans_noaug)
dataset_test = datasets.MNIST(args.data_dir, train=False, download=True, transform=trans_noaug)
elif args.dataset == "fmnist":
dataset_train = datasets.FashionMNIST(args.data_dir, download=True, train=True, transform=trans_weakaug)
dataset_query = datasets.FashionMNIST(args.data_dir, download=True, train=True, transform=trans_noaug)
dataset_test = datasets.FashionMNIST(args.data_dir, download=True, train=False, transform=trans_noaug)
elif args.dataset == 'emnist':
dataset_train = datasets.EMNIST(args.data_dir, split='byclass', train=True, download=True, transform=trans_weakaug)
dataset_query = datasets.EMNIST(args.data_dir, split='byclass', train=True, download=True, transform=trans_noaug)
dataset_test = datasets.EMNIST(args.data_dir, split='byclass', train=False, download=True, transform=trans_noaug)
elif args.dataset == 'svhn':
dataset_train = datasets.SVHN(args.data_dir, 'train', download=True, transform=trans_weakaug)
dataset_query = datasets.SVHN(args.data_dir, 'train', download=True, transform=trans_noaug)
dataset_test = datasets.SVHN(args.data_dir, 'test', download=True, transform=trans_noaug)
elif args.dataset == 'cifar10':
dataset_train = datasets.CIFAR10(args.data_dir, train=True, download=True, transform=trans_weakaug)
dataset_query = datasets.CIFAR10(args.data_dir, train=True, download=True, transform=trans_noaug)
dataset_test = datasets.CIFAR10(args.data_dir, train=False, download=True, transform=trans_noaug)
elif args.dataset == 'cifar10_lt':
dataset_train = IMBALANCECIFAR10('train', args.imb_ratio, args.data_dir)
dataset_query = IMBALANCECIFAR10('train', args.imb_ratio, args.data_dir, train_aug=False)
dataset_test = IMBALANCECIFAR10('test', args.imb_ratio, args.data_dir)
elif args.dataset == 'cifar100':
dataset_train = datasets.CIFAR100(args.data_dir, train=True, download=True, transform=trans_weakaug)
dataset_query = datasets.CIFAR100(args.data_dir, train=True, download=True, transform=trans_noaug)
dataset_test = datasets.CIFAR100(args.data_dir, train=False, download=True, transform=trans_noaug)
elif args.dataset == 'cifar10_lt':
dataset_train = IMBALANCECIFAR100('train', args.imb_ratio, args.data_dir)
dataset_query = IMBALANCECIFAR100('train', args.imb_ratio, args.data_dir, train_aug=False)
dataset_test = IMBALANCECIFAR100('test', args.imb_ratio, args.data_dir)
# medical benchmarks
elif args.dataset in ['pathmnist', 'octmnist', 'organamnist', 'dermamnist', 'bloodmnist']:
DataClass = getattr(medmnist, INFO[args.dataset]['python_class'])
dataset_train = DataClass(download=True, split='train', transform=trans_weakaug)
dataset_query = DataClass(download=True, split='train', transform=trans_noaug)
dataset_test = DataClass(download=True, split='test', transform=trans_noaug)
else:
exit('Error: unrecognized dataset')
args.dataset_train = dataset_train
args.total_data = len(dataset_train)
if args.partition == "shard_balance":
dict_users_train_total = shard_balance(dataset_train, args)
dict_users_test_total = shard_balance(dataset_test, args)
elif args.partition == "dir_balance":
dict_users_train_total, sample = dir_balance(dataset_train, args)
dict_users_test_total, _ = dir_balance(dataset_test, args, sample)
args.n_query = round(args.total_data, -2) * args.query_ratio
args.n_data = round(args.total_data, -2) * args.current_ratio
return dataset_train, dataset_query, dataset_test, dict_users_train_total, dict_users_test_total, args
def train_test(net_glob, dataset_train, dataset_test, dict_users_train_label, args):
results_save_path = os.path.join(args.result_dir, 'results.csv')
fl_method = get_fl_method_class(args.fl_algo)(args, dict_users_train_label)
if args.fl_algo == 'scaffold':
fl_method.init_c_nets(net_glob)
results = []
for round in range(args.rounds):
w_glob = None
loss_locals = []
m = max(int(args.frac * args.num_users), 1)
idxs_users = np.random.choice(range(args.num_users), m, replace=False)
lr = adjust_learning_rate(args, round)
print("Round {}, lr: {:.6f}, momentum:{}, weight decay:{}, idx_users: {}".format(round+1, lr, args.momentum, args.weight_decay, idxs_users))
total_data_num = sum([len(dict_users_train_label[idx]) for idx in idxs_users])
fl_method.on_round_start(net_glob=net_glob)
for idx in idxs_users:
fl_method.on_user_iter_start(dataset_train, idx)
net_local = copy.deepcopy(net_glob)
w_local, loss = fl_method.train(net=net_local.to(args.device),
user_idx=idx,
lr=lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
loss_locals.append(copy.deepcopy(loss))
fl_method.on_user_iter_end()
w_glob = fl_method.aggregate(w_glob=w_glob, w_local=w_local, idx_user=idx, total_data_num=total_data_num)
fl_method.on_round_end(idxs_users)
net_glob.load_state_dict(w_glob, strict=False)
acc_test, loss_test = fl_method.test(net_glob, dataset_test)
loss_avg = sum(loss_locals) / len(loss_locals)
print('Round {:3d}, Average loss {:.3f}, Test loss {:.3f}, Test accuracy: {:.2f}'.format(
round+1, loss_avg, loss_test, acc_test))
results.append(np.array([round, loss_avg, loss_test, acc_test]))
last_save_path = os.path.join(args.result_dir, 'last.pt')
torch.save(net_glob.state_dict(), last_save_path)
final_results = np.array(results)
final_results = pd.DataFrame(final_results, columns=['epoch', 'loss_avg', 'loss_test', 'acc_test'])
final_results.to_csv(results_save_path, index=False)
return net_glob.state_dict()
if __name__ == '__main__':
args = args_parser()
args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
# print("device:", args.device)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
np.random.seed(args.seed)
random.seed(args.seed)
args = set_result_dir(args)
args = set_dict_user_path(args)
# total dataset for each client
dataset_train, dataset_query, dataset_test, dict_users_train_total, dict_users_test_total, args = get_dataset(args)
dict_users_train_label = None
while round(args.current_ratio, 2) <= args.end_ratio:
print('[Current data ratio] %.3f' % args.current_ratio)
net_glob = get_model(args)
if args.query_ratio == args.current_ratio:
dict_users_train_label, args = random_query_samples(dict_users_train_total, dict_users_test_total, args)
else:
if dict_users_train_label is None:
path = os.path.join(args.dict_user_path, 'dict_users_train_label_{:.3f}.pkl'.format(args.current_ratio - args.query_ratio))
with open(path, 'rb') as f:
dict_users_train_label = pickle.load(f)
args.dict_users_total_path = os.path.join(args.dict_user_path, 'dict_users_train_test_total.pkl'.format(args.seed))
last_ckpt = torch.load(args.query_model)
print("Load Total Data Idxs from {}".format(args.dict_users_total_path))
with open(args.dict_users_total_path, 'rb') as f:
dict_users_train_total, dict_users_test_total = pickle.load(f)
dict_users_train_label = algo_query_samples(dataset_train, dataset_query, dict_users_train_total, args)
if args.reset == 'continue' and args.query_model:
query_net_state_dict = torch.load(args.query_model)
net_glob.load_state_dict(query_net_state_dict)
last_ckpt = train_test(net_glob, dataset_train, dataset_test, dict_users_train_label, args)
args.current_ratio += args.query_ratio
# update path
args = set_result_dir(args)
args = set_dict_user_path(args)