-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathvisualize.py
299 lines (279 loc) · 10.3 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from h5py import File as HDF5
from matplotlib import pyplot as plt
import numpy as np
from environment.utils import visualize_grasp
import sys
from filelock import FileLock
import os
import seaborn as sns
import pandas as pd
from utils import collect_stats
from tqdm import tqdm
import pickle
from pprint import pprint
def summarize(path):
stats = collect_stats(path, int(1e7))
for key, value in stats.items():
if all(word not in key for word in ['distribution', 'img',
'min', 'max', '_steps']):
print(f'\t[{key:<36}]:\t{value:.04f}')
# Episode lengths
print('Easy Episode Lengths:')
if 'episode_length/easy/distribution' in stats:
easy_episode_lengths = stats['episode_length/easy/distribution']
print('\tmean: {:.04f}'.format(
np.mean(easy_episode_lengths)))
print('\t25-quantile: {:.04f}'.format(
np.quantile(easy_episode_lengths, 0.25)))
print('\tmedian: {:.04f}'.format(
np.median(easy_episode_lengths)))
print('\t75-quantile: {:.04f}'.format(
np.quantile(easy_episode_lengths, 0.75)))
if 'episode_length/hard/distribution' in stats:
hard_episode_lengths = stats['episode_length/hard/distribution']
print('Hard Episode Lengths:')
print('\tmean: {:.02f}'.format(
np.mean(hard_episode_lengths)))
print('\t25-quantile: {:.02f}'.format(
np.quantile(hard_episode_lengths, 0.25)))
print('\tmedian: {:.02f}'.format(
np.median(hard_episode_lengths)))
print('\t75-quantile: {:.02f}'.format(
np.quantile(hard_episode_lengths, 0.75)))
df = pd.DataFrame()
averaged_coverages = []
window = 10
if False:
final_coverage = stats['final_coverage/hard/distribution']
final_coverage = stats['episode_delta_coverage/hard/distribution']
temp = []
for i in range(0, 150):
if i + window > len(final_coverage):
break
temp.append(((i, i+window), final_coverage[i: i+window].mean()))
temp.sort(key=lambda x: x[-1], reverse=True)
pprint(temp)
episodes = []
best_coverage = stats['best_coverage/hard/distribution']
for i in range(len(stats['best_coverage/hard/distribution'])):
if i < window:
continue
for j in range(i-window, i+1):
if j > 0:
averaged_coverages.append(best_coverage[j])
episodes.append(i)
df['Final Coverage'] = averaged_coverages
df['Episodes'] = episodes
sns.lineplot(data=df, y='Final Coverage', x='Episodes')
sns.despine()
plt.title('Best Coverage over Training Episodes')
plt.grid()
plt.show()
df = pd.DataFrame()
averaged_coverages = []
episodes = []
final_coverage = stats['final_coverage/hard/distribution']
for i in range(len(stats['final_coverage/hard/distribution'])):
if i < window:
continue
for j in range(i-window, i+1):
if j > 0:
averaged_coverages.append(final_coverage[j])
episodes.append(i)
df['Final Coverage'] = averaged_coverages
df['Episodes'] = episodes
sns.lineplot(data=df, y='Final Coverage', x='Episodes')
sns.despine()
plt.title('Final Coverage over Training Episodes')
plt.grid()
plt.show()
df = pd.DataFrame()
delta_coverages = []
difficulties = []
steps = []
for level in ['easy', 'hard']:
for step, step_delta_coverages in \
sorted(stats['delta_coverage_steps'][level].items(),
key=lambda x: int(x[0])):
delta_coverages.extend(step_delta_coverages)
steps.extend([step]*len(step_delta_coverages))
difficulties.extend([level]*len(step_delta_coverages))
df['Delta-Coverage'] = delta_coverages
df['Difficulty'] = difficulties
df['Episode Step'] = steps
sns.lineplot(data=df, x='Episode Step',
y='Delta-Coverage', hue='Difficulty')
sns.despine()
plt.title('Delta-Coverage over Episode Steps')
plt.grid()
plt.show()
# Post action coverages
df = pd.DataFrame()
postaction_coverages = []
difficulties = []
steps = []
for level in ['easy', 'hard']:
for step, step_postaction_coverages in \
sorted(stats['postaction_coverage_steps'][level].items(),
key=lambda x: int(x[0])):
postaction_coverages.extend(step_postaction_coverages)
steps.extend([step]*len(step_postaction_coverages))
difficulties.extend([level]*len(step_postaction_coverages))
df['Postaction-Coverage'] = postaction_coverages
df['Difficulty'] = difficulties
df['Episode Step'] = steps
sns.lineplot(data=df, x='Episode Step',
y='Postaction-Coverage', hue='Difficulty')
sns.despine()
plt.title('Postaction-Coverage over Episode Steps')
plt.grid()
plt.show()
df = pd.DataFrame()
action_primitive_proportions = []
hues = []
steps = []
for level in ['easy', 'hard']:
for step, count in stats['action_primitives_steps'][level].items():
for action in count.keys():
steps.append(step)
action_primitive_proportions.append(count[action])
hues.append(level + ' - ' + action)
df['Action'] = action_primitive_proportions
df['Difficulty'] = hues
df['Episode Step'] = steps
sns.lineplot(data=df, x='Episode Step', y='Action', hue='Difficulty')
sns.despine()
plt.title('Action Primitive Proportion Over Episode Steps')
plt.grid()
plt.show()
def simple_visualize(group, key, path_prefix, dir_path):
fig = plt.figure()
fig.set_figheight(3.2)
fig.set_figwidth(13)
gs = fig.add_gridspec(1, 5)
ax = fig.add_subplot(gs[0, 0])
ax.axis('off')
img = np.array(group['pretransform_observations'])
img = (np.swapaxes(img, 0, -1)*255).astype(np.uint8)
ax.imshow(img[:, :, :3].astype(np.uint8))
ax.set_title(' Coverage: {:.03f}'.format(
group.attrs['preaction_coverage'] /
group.attrs['max_coverage']))
ax = fig.add_subplot(gs[0, 1:4])
ax.axis('off')
img = np.array(group['action_visualization']).astype(np.uint8)
ax.imshow(img[:, :, :3])
ax = fig.add_subplot(gs[0, 4])
ax.axis('off')
img = np.array(group['next_observations'])
img = (np.swapaxes(img, 0, -1)*255).astype(np.uint8)
ax.imshow(img)
ax.set_title(' Coverage: {:.03f}'.format(
group.attrs['postaction_coverage'] /
group.attrs['max_coverage']))
output_path = path_prefix + '_before_after.png'
plt.tight_layout(pad=0)
plt.savefig(dir_path+output_path)
plt.close(fig)
return f'<td>{key} </td><td>' +\
f'<img src="{output_path}" height="256px"> </td> '
if __name__ == "__main__":
path = sys.argv[1]
with FileLock(path + '.lock'):
with HDF5(path, 'r') as file:
keys = []
for k in file.keys():
try:
file[k].attrs['max_coverage']
keys.append(k)
except:
pass
print('keys:', len(keys))
pprint(vars(pickle.load(
open(path.split('replay_buffer.hdf5')[0] + 'args.pkl', 'rb'))))
prefix = os.path.basename(os.path.dirname(path)) + '_'
summarize(path)
if input('visualize?') != 'y':
exit()
dir_path = os.path.dirname(path) + '/'
webpage_path = dir_path + 'index.html'
print(f'Outputing visualizations to {webpage_path}')
with FileLock(path + '.lock'):
with HDF5(path, 'r') as file:
use_simple_vis = 'all_obs' not in file[keys[0]]\
or 'action_visualization' not in file[keys[0]]
visualization_fn = simple_visualize\
if use_simple_vis \
else visualize_grasp
output = """
<style>
table,
th,
td {
border: 1px solid black;
border-collapse: collapse;
}
.slidecontainer {
width: 100%;
/* Width of the outside container */
}
/* The slider itself */
.slider {
-webkit-appearance: none;
/* Override default CSS styles */
appearance: none;
width: 100%;
/* Full-width */
height: 25px;
/* Specified height */
background: #d3d3d3;
/* Grey background */
outline: none;
/* Remove outline */
opacity: 0.7;
/* Set transparency (for mouse-over effects on hover) */
-webkit-transition: .2s;
/* 0.2 seconds transition on hover */
transition: opacity .2s;
}
/* Mouse-over effects */
.slider:hover {
opacity: 1;
/* Fully shown on mouse-over */
}
</style>
<div class="slidecontainer">
<p>Speed</p>
<input type="range" min="1" max="10" value="5" class="slider" id="myRange">
</div>
"""
script = """
<script>
let slider = document.getElementById("myRange");
function updateVideoSpeed(speed) {
let vids = document.getElementsByTagName('video')
// vids is an HTMLCollection
for (let i = 0; i < vids.length; i++) {
//#t=0.1
vids.item(i).playbackRate = speed;
}
}
updateVideoSpeed(slider.value)
// Update the current slider value (each time you drag the slider handle)
slider.oninput = function () {
updateVideoSpeed(this.value)
}
</script>
"""
output += '<table style="width:100%">'
for k in tqdm(keys):
output += '<tr>'
group = file.get(k)
output += visualization_fn(
group=group,
key=k,
path_prefix=prefix + k,
dir_path=dir_path)
output += '</tr>'
with open(webpage_path, 'w') as webpage:
webpage.write(output + '</table>' + script)