-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathexperiments_hp_nn.py
116 lines (93 loc) · 4.19 KB
/
experiments_hp_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.neighbors import NearestNeighbors
from sklearn.neural_network import MLPClassifier
from explainer_tabular import LimeTabularExplainer
from load_dataset import LoadDataset
test = LoadDataset(which='hp')
X = test.data.data
feature_names = test.data.feature_names
target_names = test.data.target_names
# train, test, labels_train, labels_test = train_test_split(test.data.data, test.data.target, train_size=0.80)
# np.save("X_train_hp.npy", train)
# np.save("X_test_hp.npy", test)
# np.save("y_train_hp.npy", labels_train)
# np.save("y_test_hp.npy", labels_test)
train = np.load("data/X_train_hp.npy")
test = np.load("data/X_test_hp.npy")
labels_train = np.load("data/y_train_hp.npy")
labels_test = np.load("data/y_test_hp.npy")
nn = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1)
nn.fit(train, labels_train)
i = np.random.randint(0, test.shape[0])
explainer = LimeTabularExplainer(train,
mode="classification",
feature_names=feature_names,
class_names=target_names,
discretize_continuous=True,
verbose=False)
clustering = AgglomerativeClustering().fit(X)
names = list(feature_names)+["membership"]
clustered_data = np.column_stack([X, clustering.labels_])
nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(train)
distances, indices = nbrs.kneighbors(test)
clabel = clustering.labels_
def jaccard_similarity(list1, list2):
s1 = set(list1)
s2 = set(list2)
return len(s1.intersection(s2)) / len(s1.union(s2))
def jaccard_distance(usecase):
sim = []
for l in usecase:
i_sim = []
for j in usecase:
i_sim.append(1 - jaccard_similarity(l, j))
sim.append(i_sim)
return sim
for x in range(0, test.shape[0]):
use_case_one_features = []
use_case_two_features = []
use_case_three_features = []
use_case_four_features = []
for i in range(0, 10):
p_label = clabel[indices[x]]
N = clustered_data[clustered_data[:,19] == clabel[p_label]]
subset = np.delete(N, 19, axis=1)
exp_dlime = explainer.explain_instance_hclust(test[x],
nn.predict_proba,
num_features=5,
model_regressor=LinearRegression(),
clustered_data = subset,
regressor = 'linear', explainer='dlime', labels=(0,1))
fig_dlime, r_features = exp_dlime.as_pyplot_to_figure(type='h', name = i+.2, label='0')
fig_dlime.show()
use_case_two_features.append(r_features)
exp_lime = explainer.explain_instance_hclust(test[x],
nn.predict_proba,
num_features=5,
model_regressor= LinearRegression(),
regressor = 'linear', explainer = 'lime', labels=(0,1))
fig_lime, r_features = exp_lime.as_pyplot_to_figure(type='h', name = i+.3, label='0')
fig_lime.show()
use_case_three_features.append(r_features)
################################################
sim = jaccard_distance(use_case_two_features)
np.savetxt("results/nn_dlime_jdist_hp.csv", sim, delimiter=",")
print(np.asarray(sim).mean())
plt.figure(figsize=(1, 1))
plt.matshow(sim);
plt.colorbar()
plt.savefig("results/sim_use_case_2.pdf", bbox_inches='tight')
plt.show()
################################################
sim = jaccard_distance(use_case_three_features)
np.savetxt("results/nn_lime_jdist_hp.csv", sim, delimiter=",")
print(np.asarray(sim).mean())
plt.figure(figsize=(1, 1), dpi=80)
plt.matshow(sim);
plt.colorbar()
plt.savefig("results/sim_use_case_3.pdf", bbox_inches='tight')
plt.show()