-
-
Notifications
You must be signed in to change notification settings - Fork 256
/
Copy pathmod.rs
995 lines (870 loc) · 33.2 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
//! Datasets
//!
//! This module implements the dataset struct and various helper traits to extend its
//! functionality.
use ndarray::{
Array, Array1, ArrayBase, ArrayView, ArrayView1, ArrayView2, ArrayViewMut, ArrayViewMut1,
ArrayViewMut2, CowArray, Ix1, Ix2, Ix3, NdFloat, OwnedRepr, RemoveAxis, ScalarOperand,
};
#[cfg(feature = "ndarray-linalg")]
use ndarray_linalg::{Lapack, Scalar};
use num_traits::{AsPrimitive, FromPrimitive, NumCast, Signed};
use rand::distributions::uniform::SampleUniform;
use std::cmp::{Ordering, PartialOrd};
use std::collections::{HashMap, HashSet};
use std::convert::{TryFrom, TryInto};
use std::fmt;
use std::hash::Hash;
use std::iter::Sum;
use std::ops::{AddAssign, Deref, DivAssign, MulAssign, SubAssign};
use crate::error::Result;
mod impl_dataset;
mod impl_records;
mod impl_targets;
mod iter;
mod lapack_bounds;
pub use lapack_bounds::*;
/// Floating point numbers
///
/// This trait bound multiplexes to the most common assumption of floating point number and
/// implement them for 32bit and 64bit floating points. They are used in records of a dataset and, for
/// regression task, in the targets as well.
pub trait Float:
NdFloat
+ FromPrimitive
+ Default
+ Signed
+ Sum
+ AsPrimitive<usize>
+ for<'a> AddAssign<&'a Self>
+ for<'a> MulAssign<&'a Self>
+ for<'a> SubAssign<&'a Self>
+ for<'a> DivAssign<&'a Self>
+ num_traits::MulAdd<Output = Self>
+ SampleUniform
+ ScalarOperand
+ approx::AbsDiffEq
+ std::marker::Unpin
+ sprs::MulAcc
{
#[cfg(feature = "ndarray-linalg")]
type Lapack: Float + Scalar + Lapack;
#[cfg(not(feature = "ndarray-linalg"))]
type Lapack: Float;
fn cast<T: NumCast>(x: T) -> Self {
NumCast::from(x).unwrap()
}
}
impl Float for f32 {
type Lapack = f32;
}
impl Float for f64 {
type Lapack = f64;
}
/// Discrete labels
///
/// Labels are countable, comparable and hashable. Currently null-type (no targets),
/// boolean (binary task) and usize, strings (multi-label tasks) are supported.
pub trait Label: PartialEq + Eq + Hash + Clone + Ord + fmt::Debug + Default {}
impl Label for bool {}
impl Label for usize {}
impl Label for String {}
impl Label for () {}
impl Label for &str {}
impl<L: Label> Label for Option<L> {}
/// Probability types
///
/// This helper struct exists to distinguish probabilities from floating points. For example SVM
/// selects regression or classification training, based on the target type, and could not
/// distinguish them without a new-type definition.
#[repr(transparent)]
#[derive(Debug, Copy, Clone, Default)]
pub struct Pr(f32);
/// Tries to convert float to probability type.
///
/// # Returns
/// Either probability type Pr(f32) or error as Err(f32)
impl TryFrom<f32> for Pr {
type Error = f32;
fn try_from(prob: f32) -> std::result::Result<Self, Self::Error> {
if (0. ..=1.).contains(&prob) {
Ok(Pr(prob))
} else {
Err(prob)
}
}
}
impl Pr {
/// Creates probability from the given float.
///
/// # Panics
/// Panics if probability is negative or bigger than one.
pub fn new(prob: f32) -> Self {
prob.try_into().unwrap()
}
/// Creates probability from the given float.
/// Doesn't check whether it is negative or bigger than one.
pub fn new_unchecked(prob: f32) -> Self {
Pr(prob)
}
pub fn even() -> Pr {
Pr(0.5)
}
}
impl PartialEq for Pr {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl PartialOrd for Pr {
fn partial_cmp(&self, other: &Pr) -> Option<Ordering> {
self.0.partial_cmp(&other.0)
}
}
impl Deref for Pr {
type Target = f32;
fn deref(&self) -> &f32 {
&self.0
}
}
/// DatasetBase
///
/// This is the fundamental structure of a dataset. It contains a number of records about the data
/// and may contain targets, weights and feature names. In order to keep the type complexity low
/// the dataset base is only generic over the records and targets and introduces a trait bound on
/// the records. `weights` and `feature_names`, on the other hand, are always assumed to be owned
/// and copied when views are created.
///
/// # Fields
///
/// * `records`: a two-dimensional matrix with dimensionality (nsamples, nfeatures), in case of
/// kernel methods a quadratic matrix with dimensionality (nsamples, nsamples), which may be sparse
/// * `targets`: a two-/one-dimension matrix with dimensionality (nsamples, ntargets)
/// * `weights`: optional weights for each sample with dimensionality (nsamples)
/// * `feature_names`: optional descriptive feature names with dimensionality (nfeatures)
///
/// # Trait bounds
///
/// * `R: Records`: generic over feature matrices or kernel matrices
/// * `T`: generic over any `ndarray` matrix which can be used as targets. The `AsTargets` trait
/// bound is omitted here to avoid some repetition in implementation `src/dataset/impl_dataset.rs`
#[derive(Debug, Clone, PartialEq)]
pub struct DatasetBase<R, T>
where
R: Records,
{
pub records: R,
pub targets: T,
pub weights: Array1<f32>,
feature_names: Vec<String>,
}
/// Targets with precomputed, counted labels
///
/// This extends plain targets with pre-counted labels. The label map is useful when, for example,
/// a prior probability is estimated (e.g. in Naive Bayesian implementation) or the samples are
/// weighted inverse to their occurence.
///
/// # Fields
///
/// * `targets`: wrapped target field
/// * `labels`: counted labels with label-count association
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct CountedTargets<L: Label, P> {
targets: P,
labels: Vec<HashMap<L, usize>>,
}
/// Dataset
///
/// The most commonly used typed of dataset. It contains a number of records
/// stored as an `Array2` and each record may correspond to multiple targets. The
/// targets are stored as an `Array1` or `Array2`.
pub type Dataset<D, T, I = Ix2> =
DatasetBase<ArrayBase<OwnedRepr<D>, Ix2>, ArrayBase<OwnedRepr<T>, I>>;
/// DatasetView
///
/// A read only view of a Dataset
pub type DatasetView<'a, D, T, I = Ix2> = DatasetBase<ArrayView<'a, D, Ix2>, ArrayView<'a, T, I>>;
/// DatasetPr
///
/// Dataset with probabilities as targets. Useful for multiclass probabilities.
/// It stores records as an `Array2` of elements of type `D`, and targets as an `Array3`
/// of elements of type `Pr`
pub type DatasetPr<D, L> =
DatasetBase<ArrayBase<OwnedRepr<D>, Ix2>, CountedTargets<L, ArrayBase<OwnedRepr<Pr>, Ix3>>>;
/// Record trait
pub trait Records: Sized {
type Elem;
fn nsamples(&self) -> usize;
fn nfeatures(&self) -> usize;
}
pub trait TargetDim: RemoveAxis {
fn nsamples(mut self, nsamples: usize) -> Self {
self.as_array_view_mut()[0] = nsamples;
self
}
}
/// Return a reference to single or multiple target variables.
///
/// This is generic over the dimension of the target array to support both single-target and
/// multi-target variables.
pub trait AsTargets {
type Elem;
type Ix: TargetDim;
fn as_targets(&self) -> ArrayView<Self::Elem, Self::Ix>;
}
/// Return a reference to single-target variables.
pub trait AsSingleTargets: AsTargets<Ix = Ix1> {
fn as_single_targets(&self) -> ArrayView1<Self::Elem> {
self.as_targets()
}
}
/// Return a reference to multi-target variables.
pub trait AsMultiTargets: AsTargets<Ix = Ix2> {
fn as_multi_targets(&self) -> ArrayView2<Self::Elem> {
self.as_targets()
}
}
/// Helper trait to construct counted labels
///
/// This is implemented for objects which can act as targets and created from a target matrix. For
/// targets represented as `ndarray` matrix this is identity, for counted labels, i.e.
/// `TargetsWithLabels`, it creates the corresponding wrapper struct.
pub trait FromTargetArray<'a>: AsTargets {
type Owned;
type View;
/// Create self object from new target array
fn new_targets(targets: Array<Self::Elem, Self::Ix>) -> Self::Owned;
fn new_targets_view(targets: ArrayView<'a, Self::Elem, Self::Ix>) -> Self::View;
}
/// Return a mutable reference to single or multiple target variables.
///
/// This is generic over the dimension of the target array to support both single-target and
/// multi-target variables.
pub trait AsTargetsMut {
type Elem;
type Ix: TargetDim;
fn as_targets_mut(&mut self) -> ArrayViewMut<Self::Elem, Self::Ix>;
}
/// Returns a mutable reference to single-target variables.
pub trait AsSingleTargetsMut: AsTargetsMut<Ix = Ix1> {
fn as_single_targets_mut(&mut self) -> ArrayViewMut1<Self::Elem> {
self.as_targets_mut()
}
}
/// Returns a mutable reference to multi-target variables.
pub trait AsMultiTargetsMut: AsTargetsMut<Ix = Ix2> {
fn as_multi_targets_mut(&mut self) -> ArrayViewMut2<Self::Elem> {
self.as_targets_mut()
}
}
/// Convert to probability matrix
///
/// Some algorithms are working with probabilities. Targets which allow an implicit conversion into
/// probabilities can implement this trait.
pub trait AsProbabilities {
fn as_multi_target_probabilities(&self) -> CowArray<Pr, Ix3>;
}
/// Get the labels in all targets
///
pub trait Labels {
type Elem: Label;
fn label_count(&self) -> Vec<HashMap<Self::Elem, usize>>;
fn label_set(&self) -> Vec<HashSet<Self::Elem>> {
self.label_count()
.iter()
.map(|x| x.keys().cloned().collect::<HashSet<_>>())
.collect()
}
fn labels(&self) -> Vec<Self::Elem> {
self.label_set().into_iter().flatten().collect()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::error::Error;
use approx::assert_abs_diff_eq;
use linfa_datasets::generate::make_dataset;
use ndarray::{array, Array1, Array2, Axis};
use rand::{rngs::SmallRng, SeedableRng};
use statrs::distribution::{DiscreteUniform, Laplace};
#[test]
fn into_single_target() {
let feat_distr = Laplace::new(0.5, 5.).unwrap();
let target_distr = DiscreteUniform::new(0, 5).unwrap();
let dataset = make_dataset(10, 5, 1, feat_distr, target_distr);
assert!(dataset.into_single_target().targets.shape() == [10]);
}
#[test]
fn dataset_implements_required_methods() {
let mut rng = SmallRng::seed_from_u64(42);
// ------ Targets ------
// New
let mut dataset = Dataset::new(array![[1., 2.], [1., 2.]], array![0., 1.]);
// Shuffle
dataset = dataset.shuffle(&mut rng);
// Bootstrap samples
{
let mut iter = dataset.bootstrap_samples(3, &mut rng);
for _ in 1..5 {
let b_dataset = iter.next().unwrap();
assert_eq!(b_dataset.records().dim().0, 3);
}
}
// Bootstrap features
{
let mut iter = dataset.bootstrap_features(3, &mut rng);
for _ in 1..5 {
let dataset = iter.next().unwrap();
assert_eq!(dataset.records().dim(), (2, 3));
}
}
// Bootstrap both
{
let mut iter = dataset.bootstrap((10, 10), &mut rng);
for _ in 1..5 {
let dataset = iter.next().unwrap();
assert_eq!(dataset.records().dim(), (10, 10));
}
}
let linspace: Array1<f64> = Array1::linspace(0.0, 0.8, 100);
let records = Array2::from_shape_vec((50, 2), linspace.to_vec()).unwrap();
let targets: Array1<f64> = Array1::linspace(0.0, 0.8, 50);
let dataset = Dataset::from((records, targets));
//Split with ratio view
let dataset_view = dataset.view();
let (train, val) = dataset_view.split_with_ratio(0.5);
assert_eq!(train.nsamples(), 25);
assert_eq!(val.nsamples(), 25);
// Split with ratio
let (train, val) = dataset.split_with_ratio(0.25);
assert_eq!(train.targets().dim(), 13);
assert_eq!(val.targets().dim(), 37);
assert_eq!(train.records().dim().0, 13);
assert_eq!(val.records().dim().0, 37);
// ------ Labels ------
let dataset_multiclass =
Dataset::from((array![[1., 2.], [2., 1.], [0., 0.]], array![0usize, 1, 2]));
// One Vs All
let datasets_one_vs_all = dataset_multiclass.one_vs_all().unwrap();
assert_eq!(datasets_one_vs_all.len(), 3);
for (_, dataset) in datasets_one_vs_all.iter() {
assert_eq!(dataset.labels().iter().filter(|x| **x).count(), 1);
}
let dataset_multiclass = Dataset::from((
array![[1., 2.], [2., 1.], [0., 0.], [2., 2.]],
array![0, 1, 2, 2],
));
// Frequencies with mask
let freqs = dataset_multiclass.label_frequencies_with_mask(&[true, true, true, true]);
assert_eq!(*freqs.get(&0).unwrap() as usize, 1);
assert_eq!(*freqs.get(&1).unwrap() as usize, 1);
assert_eq!(*freqs.get(&2).unwrap() as usize, 2);
let freqs = dataset_multiclass.label_frequencies_with_mask(&[true, true, true, false]);
assert_eq!(*freqs.get(&0).unwrap() as usize, 1);
assert_eq!(*freqs.get(&1).unwrap() as usize, 1);
assert_eq!(*freqs.get(&2).unwrap() as usize, 1);
}
#[test]
fn dataset_view_implements_required_methods() -> Result<()> {
let mut rng = SmallRng::seed_from_u64(42);
let records = array![[1., 2.], [1., 2.]];
let targets = array![0., 1.];
// ------ Targets ------
// New
let dataset_view = DatasetView::from((records.view(), targets.view()));
// Shuffle
let _shuffled_owned = dataset_view.shuffle(&mut rng);
// Bootstrap
let mut iter = dataset_view.bootstrap_samples(3, &mut rng);
for _ in 1..5 {
let b_dataset = iter.next().unwrap();
assert_eq!(b_dataset.records().dim().0, 3);
}
let linspace: Array1<f64> = Array1::linspace(0.0, 0.8, 100);
let records = Array2::from_shape_vec((50, 2), linspace.to_vec()).unwrap();
let targets: Array1<f64> = Array1::linspace(0.0, 0.8, 50);
let dataset = Dataset::from((records, targets));
// view ,Split with ratio view
let view: DatasetView<f64, f64, Ix1> = dataset.view();
let (train, val) = view.split_with_ratio(0.5);
assert_eq!(train.targets().len(), 25);
assert_eq!(val.targets().len(), 25);
assert_eq!(train.nsamples(), 25);
assert_eq!(val.nsamples(), 25);
// ------ Labels ------
let dataset_multiclass =
Dataset::from((array![[1., 2.], [2., 1.], [0., 0.]], array![0, 1, 2]));
let view: DatasetView<f64, usize, Ix1> = dataset_multiclass.view();
// One Vs All
let datasets_one_vs_all = view.one_vs_all()?;
assert_eq!(datasets_one_vs_all.len(), 3);
for (_, dataset) in datasets_one_vs_all.iter() {
assert_eq!(dataset.labels().iter().filter(|x| **x).count(), 1);
}
let dataset_multiclass = Dataset::from((
array![[1., 2.], [2., 1.], [0., 0.], [2., 2.]],
array![0, 1, 2, 2],
));
let view: DatasetView<f64, usize, Ix1> = dataset_multiclass.view();
// Frequencies with mask
let freqs = view.label_frequencies_with_mask(&[true, true, true, true]);
assert_eq!(*freqs.get(&0).unwrap() as usize, 1);
assert_eq!(*freqs.get(&1).unwrap() as usize, 1);
assert_eq!(*freqs.get(&2).unwrap() as usize, 2);
let freqs = view.label_frequencies_with_mask(&[true, true, true, false]);
assert_eq!(*freqs.get(&0).unwrap() as usize, 1);
assert_eq!(*freqs.get(&1).unwrap() as usize, 1);
assert_eq!(*freqs.get(&2).unwrap() as usize, 1);
Ok(())
}
#[test]
fn datasets_have_k_fold() {
let linspace: Array1<f64> = Array1::linspace(0.0, 0.8, 100);
let records = Array2::from_shape_vec((50, 2), linspace.to_vec()).unwrap();
let targets: Array1<f64> = Array1::linspace(0.0, 0.8, 50);
for (train, val) in DatasetView::from((records.view(), targets.view()))
.fold(2)
.into_iter()
{
assert_eq!(train.records().dim(), (25, 2));
assert_eq!(val.records().dim(), (25, 2));
assert_eq!(train.targets().dim(), 25);
assert_eq!(val.targets().dim(), 25);
}
assert_eq!(Dataset::from((records, targets)).fold(10).len(), 10);
let records =
Array2::from_shape_vec((5, 2), vec![1., 1., 2., 2., 3., 3., 4., 4., 5., 5.]).unwrap();
let targets = Array1::from_shape_vec(5, vec![1., 2., 3., 4., 5.]).unwrap();
for (i, (train, val)) in Dataset::from((records, targets))
.fold(5)
.into_iter()
.enumerate()
{
assert_eq!(val.records.row(0)[0] as usize, (i + 1));
assert_eq!(val.records.row(0)[1] as usize, (i + 1));
assert_eq!(val.targets[0] as usize, (i + 1));
for j in 0..4 {
assert!(train.records.row(j)[0] as usize != (i + 1));
assert!(train.records.row(j)[1] as usize != (i + 1));
assert!(train.targets[j] as usize != (i + 1));
}
}
}
#[test]
fn check_iteration() {
let dataset = Dataset::new(
array![[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.]],
array![[1, 2], [3, 4], [5, 6]],
);
let res = dataset
.target_iter()
.map(|x| x.as_targets().remove_axis(Axis(1)).to_owned())
.collect::<Vec<_>>();
assert_eq!(res, &[array![1, 3, 5], array![2, 4, 6]]);
let res = dataset
.feature_iter()
.map(|x| x.records)
.collect::<Vec<_>>();
assert_eq!(
res,
&[
array![[1.], [5.], [9.]],
array![[2.], [6.], [10.]],
array![[3.], [7.], [11.]],
array![[4.], [8.], [12.]],
]
);
let res = dataset
.sample_iter()
.map(|(a, b)| (a.to_owned(), b.to_owned()))
.collect::<Vec<_>>();
assert_eq!(
res,
&[
(array![1., 2., 3., 4.], array![1, 2]),
(array![5., 6., 7., 8.], array![3, 4]),
(array![9., 10., 11., 12.], array![5, 6]),
]
);
}
use crate::traits::{Fit, PredictInplace};
use ndarray::ArrayView2;
use thiserror::Error;
struct MockFittable {
mock_var: usize,
}
struct MockFittableResult {
mock_var: usize,
}
#[derive(Error, Debug)]
enum MockError {
#[error(transparent)]
LinfaError(#[from] crate::error::Error),
}
type MockResult<T> = std::result::Result<T, MockError>;
impl<'a> Fit<ArrayView2<'a, f64>, ArrayView1<'a, f64>, MockError> for MockFittable {
type Object = MockFittableResult;
fn fit(
&self,
training_data: &DatasetView<f64, f64, Ix1>,
) -> std::result::Result<Self::Object, MockError> {
if self.mock_var == 0 {
Err(MockError::LinfaError(Error::Parameters("0".to_string())))
} else {
Ok(MockFittableResult {
mock_var: training_data.nsamples(),
})
}
}
}
impl<'a> Fit<ArrayView2<'a, f64>, ArrayView2<'a, f64>, MockError> for MockFittable {
type Object = MockFittableResult;
fn fit(
&self,
training_data: &DatasetView<f64, f64, Ix2>,
) -> std::result::Result<Self::Object, MockError> {
if self.mock_var == 0 {
Err(MockError::LinfaError(Error::Parameters("0".to_string())))
} else {
Ok(MockFittableResult {
mock_var: training_data.nsamples(),
})
}
}
}
impl<'b> PredictInplace<ArrayView2<'b, f64>, Array1<f64>> for MockFittableResult {
fn predict_inplace<'a>(&'a self, x: &'a ArrayView2<'b, f64>, y: &mut Array1<f64>) {
assert_eq!(
x.nrows(),
y.len(),
"The number of data points must match the number of output targets."
);
*y = array![0.];
}
fn default_target(&self, x: &ArrayView2<f64>) -> Array1<f64> {
Array1::zeros(x.nrows())
}
}
impl<'b> PredictInplace<ArrayView2<'b, f64>, Array2<f64>> for MockFittableResult {
fn predict_inplace<'a>(&'a self, x: &'a ArrayView2<'b, f64>, y: &mut Array2<f64>) {
assert_eq!(
y.shape(),
&[x.nrows(), 2],
"The number of data points must match the number of output targets."
);
*y = array![[0., 0.]];
}
fn default_target(&self, x: &ArrayView2<f64>) -> Array2<f64> {
Array2::zeros((x.nrows(), 2))
}
}
#[test]
fn test_iter_fold() {
let records =
Array2::from_shape_vec((5, 2), vec![1., 1., 2., 2., 3., 3., 4., 4., 5., 5.]).unwrap();
let targets = Array1::from_shape_vec(5, vec![1., 2., 3., 4., 5.]).unwrap();
let mut dataset: Dataset<f64, f64, Ix1> = (records, targets).into();
let params = MockFittable { mock_var: 1 };
for (i, (model, validation_set)) in
dataset.iter_fold(5, |v| params.fit(v).unwrap()).enumerate()
{
assert_eq!(model.mock_var, 4);
assert_eq!(validation_set.records().row(0)[0] as usize, i + 1);
assert_eq!(validation_set.records().row(0)[1] as usize, i + 1);
assert_eq!(validation_set.targets()[0] as usize, i + 1);
assert_eq!(validation_set.records().dim(), (1, 2));
assert_eq!(validation_set.targets().dim(), 1);
}
}
#[test]
fn test_iter_fold_uneven_folds() {
let records =
Array2::from_shape_vec((5, 2), vec![1., 1., 2., 2., 3., 3., 4., 4., 5., 5.]).unwrap();
let targets = Array1::from_shape_vec(5, vec![1., 2., 3., 4., 5.]).unwrap();
let mut dataset: Dataset<f64, f64, Ix1> = (records, targets).into();
let params = MockFittable { mock_var: 1 };
// If we request three folds from a dataset with 5 samples it will cut the
// last two samples from the folds and always add them as a tail of the training
// data
for (i, (model, validation_set)) in
dataset.iter_fold(3, |v| params.fit(v).unwrap()).enumerate()
{
assert_eq!(model.mock_var, 4);
assert_eq!(validation_set.records().row(0)[0] as usize, i + 1);
assert_eq!(validation_set.records().row(0)[1] as usize, i + 1);
assert_eq!(validation_set.targets()[0] as usize, i + 1);
assert_eq!(validation_set.records().dim(), (1, 2));
assert_eq!(validation_set.targets().dim(), 1);
assert!(i < 3);
}
// the same goes for the last sample if we choose 4 folds
for (i, (model, validation_set)) in
dataset.iter_fold(4, |v| params.fit(v).unwrap()).enumerate()
{
assert_eq!(model.mock_var, 4);
assert_eq!(validation_set.records().row(0)[0] as usize, i + 1);
assert_eq!(validation_set.records().row(0)[1] as usize, i + 1);
assert_eq!(validation_set.targets()[0] as usize, i + 1);
assert_eq!(validation_set.records().dim(), (1, 2));
assert_eq!(validation_set.targets().dim(), 1);
assert!(i < 4);
}
// if we choose 2 folds then again the last sample will be only
// used for trainig
for (i, (model, validation_set)) in
dataset.iter_fold(2, |v| params.fit(v).unwrap()).enumerate()
{
assert_eq!(model.mock_var, 3);
assert_eq!(validation_set.targets().dim(), 2);
assert!(i < 2);
}
}
#[test]
#[should_panic]
fn iter_fold_panics_k_0() {
let records =
Array2::from_shape_vec((5, 2), vec![1., 1., 2., 2., 3., 3., 4., 4., 5., 5.]).unwrap();
let targets = Array1::from_shape_vec(5, vec![1., 2., 3., 4., 5.]).unwrap();
let mut dataset: Dataset<f64, f64, Ix1> = (records, targets).into();
let params = MockFittable { mock_var: 1 };
let _ = dataset.iter_fold(0, |v| params.fit(v)).enumerate();
}
#[test]
#[should_panic]
fn iter_fold_panics_k_more_than_samples() {
let records =
Array2::from_shape_vec((5, 2), vec![1., 1., 2., 2., 3., 3., 4., 4., 5., 5.]).unwrap();
let targets = Array1::from_shape_vec(5, vec![1., 2., 3., 4., 5.]).unwrap();
let mut dataset: Dataset<f64, f64, Ix1> = (records, targets).into();
let params = MockFittable { mock_var: 1 };
let _ = dataset.iter_fold(6, |v| params.fit(v)).enumerate();
}
#[test]
fn test_st_cv_all_correct() {
let records =
Array2::from_shape_vec((5, 2), vec![1., 1., 2., 2., 3., 3., 4., 4., 5., 5.]).unwrap();
let targets = Array1::from_shape_vec(5, vec![1., 2., 3., 4., 5.]).unwrap();
let mut dataset: Dataset<f64, f64, Ix1> = (records, targets).into();
let params = vec![MockFittable { mock_var: 1 }, MockFittable { mock_var: 2 }];
let acc = dataset
.cross_validate_single(5, ¶ms, |_pred, _truth| Ok(3.))
.unwrap();
assert_eq!(acc, array![3., 3.]);
let mut dataset: Dataset<f64, f64> =
(array![[1., 1.], [2., 2.]], array![[1., 2.], [3., 4.]]).into();
let params = vec![MockFittable { mock_var: 1 }, MockFittable { mock_var: 2 }];
let acc = dataset
.cross_validate(2, ¶ms, |_pred, _truth| Ok(array![3., 3.]))
.unwrap();
assert_eq!(acc, array![[3., 3.], [3., 3.]]);
}
#[test]
#[should_panic(
expected = "called `Result::unwrap()` on an `Err` value: LinfaError(Parameters(\"0\"))"
)]
fn test_st_cv_one_incorrect() {
let records =
Array2::from_shape_vec((5, 2), vec![1., 1., 2., 2., 3., 3., 4., 4., 5., 5.]).unwrap();
let targets = Array1::from_shape_vec(5, vec![1., 2., 3., 4., 5.]).unwrap();
let mut dataset: Dataset<f64, f64, Ix1> = (records, targets).into();
// second one should throw an error
let params = vec![MockFittable { mock_var: 1 }, MockFittable { mock_var: 0 }];
let acc: MockResult<Array1<_>> =
dataset.cross_validate_single(5, ¶ms, |_pred, _truth| Ok(0.));
acc.unwrap();
}
#[test]
#[should_panic(
expected = "called `Result::unwrap()` on an `Err` value: LinfaError(Parameters(\"eval\"))"
)]
fn test_st_cv_incorrect_eval() {
let records =
Array2::from_shape_vec((5, 2), vec![1., 1., 2., 2., 3., 3., 4., 4., 5., 5.]).unwrap();
let targets = Array1::from_shape_vec(5, vec![1., 2., 3., 4., 5.]).unwrap();
let mut dataset: Dataset<f64, f64, Ix1> = (records, targets).into();
// second one should throw an error
let params = vec![MockFittable { mock_var: 1 }, MockFittable { mock_var: 1 }];
let err: MockResult<Array1<_>> =
dataset.cross_validate_single(5, ¶ms, |_pred, _truth| {
if false {
Ok(0f32)
} else {
Err(Error::Parameters("eval".to_string()))
}
});
err.unwrap();
}
#[test]
fn test_st_cv_mt_all_correct() {
let records =
Array2::from_shape_vec((5, 2), vec![1., 1., 2., 2., 3., 3., 4., 4., 5., 5.]).unwrap();
let targets = array![[1., 1.], [2., 2.], [3., 3.], [4., 4.], [5., 5.]];
let mut dataset: Dataset<f64, f64> = (records, targets).into();
let params = vec![MockFittable { mock_var: 1 }, MockFittable { mock_var: 2 }];
let acc = dataset
.cross_validate(5, ¶ms, |_pred, _truth| Ok(array![5., 6.]))
.unwrap();
assert_eq!(acc.dim(), (params.len(), dataset.ntargets()));
assert_eq!(acc, array![[5., 6.], [5., 6.]])
}
#[test]
fn test_st_cv_mt_one_incorrect() {
let records =
Array2::from_shape_vec((5, 2), vec![1., 1., 2., 2., 3., 3., 4., 4., 5., 5.]).unwrap();
let targets = Array1::from_shape_vec(5, vec![1., 2., 3., 4., 5.]).unwrap();
let mut dataset: Dataset<f64, f64, Ix1> = (records, targets).into();
// second one should throw an error
let params = vec![MockFittable { mock_var: 1 }, MockFittable { mock_var: 0 }];
let err = dataset
.cross_validate_single(5, ¶ms, |_pred, _truth| Ok(5.))
.unwrap_err();
assert_eq!(err.to_string(), "invalid parameter 0".to_string());
}
#[test]
fn test_st_cv_mt_incorrect_eval() {
let records =
Array2::from_shape_vec((5, 2), vec![1., 1., 2., 2., 3., 3., 4., 4., 5., 5.]).unwrap();
let targets = Array1::from_shape_vec(5, vec![1., 2., 3., 4., 5.]).unwrap();
let mut dataset: Dataset<f64, f64, Ix1> = (records, targets).into();
// second one should throw an error
let params = vec![MockFittable { mock_var: 1 }, MockFittable { mock_var: 1 }];
let err = dataset
.cross_validate_single(5, ¶ms, |_pred, _truth| {
if false {
Ok(0f32)
} else {
Err(Error::Parameters("eval".to_string()))
}
})
.unwrap_err();
assert_eq!(err.to_string(), "invalid parameter eval".to_string());
}
#[test]
fn test_with_labels_st() {
let records = array![
[0., 1.],
[1., 2.],
[2., 3.],
[0., 4.],
[1., 5.],
[2., 6.],
[0., 7.],
[1., 8.],
[2., 9.],
[0., 10.]
];
let targets = array![0, 1, 2, 0, 1, 2, 0, 1, 2, 0];
let dataset = DatasetBase::from((records, targets));
assert_eq!(dataset.nsamples(), 10);
assert_eq!(dataset.ntargets(), 1);
let dataset_no_0 = dataset.with_labels(&[1, 2]);
assert_eq!(dataset_no_0.nsamples(), 6);
assert_eq!(dataset_no_0.ntargets(), 1);
assert_abs_diff_eq!(
dataset_no_0.records,
array![[1., 2.], [2., 3.], [1., 5.], [2., 6.], [1., 8.], [2., 9.]]
);
assert_abs_diff_eq!(dataset_no_0.as_single_targets(), array![1, 2, 1, 2, 1, 2]);
let dataset_no_1 = dataset.with_labels(&[0, 2]);
assert_eq!(dataset_no_1.nsamples(), 7);
assert_eq!(dataset_no_1.ntargets(), 1);
assert_abs_diff_eq!(
dataset_no_1.records,
array![
[0., 1.],
[2., 3.],
[0., 4.],
[2., 6.],
[0., 7.],
[2., 9.],
[0., 10.]
]
);
assert_abs_diff_eq!(
dataset_no_1.as_single_targets(),
array![0, 2, 0, 2, 0, 2, 0]
);
let dataset_no_2 = dataset.with_labels(&[0, 1]);
assert_eq!(dataset_no_2.nsamples(), 7);
assert_eq!(dataset_no_2.ntargets(), 1);
assert_abs_diff_eq!(
dataset_no_2.records,
array![
[0., 1.],
[1., 2.],
[0., 4.],
[1., 5.],
[0., 7.],
[1., 8.],
[0., 10.]
]
);
assert_abs_diff_eq!(
dataset_no_2.as_single_targets(),
array![0, 1, 0, 1, 0, 1, 0]
);
}
#[test]
fn test_with_labels_mt() {
let records = array![
[0., 1.],
[1., 2.],
[2., 3.],
[0., 4.],
[1., 5.],
[2., 6.],
[0., 7.],
[1., 8.],
[2., 9.],
[0., 10.]
];
let targets = array![
[0, 7],
[1, 8],
[2, 9],
[0, 7],
[1, 8],
[2, 9],
[0, 7],
[1, 8],
[2, 9],
[0, 7]
];
let dataset = DatasetBase::from((records, targets));
assert_eq!(dataset.nsamples(), 10);
assert_eq!(dataset.ntargets(), 2);
// remove 0 from target 1 and 7 from target 2
let dataset_no_07 = dataset.with_labels(&[1, 2, 8, 9]);
assert_eq!(dataset_no_07.nsamples(), 6);
assert_eq!(dataset_no_07.ntargets(), 2);
assert_abs_diff_eq!(
dataset_no_07.records,
array![[1., 2.], [2., 3.], [1., 5.], [2., 6.], [1., 8.], [2., 9.]]
);
assert_abs_diff_eq!(
dataset_no_07.as_multi_targets(),
array![[1, 8], [2, 9], [1, 8], [2, 9], [1, 8], [2, 9]]
);
// remove label 1 from target 1 and label 7 from target 2: with labels is an "any" so all targets should be kept
let dataset_no_17 = dataset.with_labels(&[0, 2, 8, 9]);
assert_eq!(dataset_no_17.nsamples(), 10);
assert_eq!(dataset_no_17.ntargets(), 2);
}
#[test]
fn correct_probability_creation() {
let prob = 0.5;
assert_abs_diff_eq!(Pr::new(prob).0, prob);
}
#[test]
#[should_panic]
fn negative_probability_panics() {
let prob = -0.5;
Pr::new(prob);
}
#[test]
fn negative_probability_unchecked() {
let prob = -0.5;
assert_abs_diff_eq!(Pr::new_unchecked(prob).0, prob);
}
}