-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
82 lines (62 loc) · 2.49 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch.nn as nn
import torch.nn.functional as F
import torch
from utils import GradReverse
class encoder(nn.Module):
def __init__(self, args):
super(encoder, self).__init__()
conv_dim = 32
self.conv1 = nn.Conv2d(args.channels, conv_dim, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(conv_dim, conv_dim, kernel_size=3, padding=1)
self.pool3 = nn.MaxPool2d(2, stride=2)
self.conv4 = nn.Conv2d(conv_dim, conv_dim * 2, kernel_size=3, padding=1)
self.conv5 = nn.Conv2d(conv_dim * 2, conv_dim * 2, kernel_size=3, padding=1)
self.pool6 = nn.MaxPool2d(2, stride=2)
self.conv7 = nn.Conv2d(conv_dim * 2, conv_dim * 4, kernel_size=3, padding=1)
self.conv8 = nn.Conv2d(conv_dim * 4, conv_dim * 4, kernel_size=3, padding=1)
self.pool9 = nn.MaxPool2d(2, stride=2)
self.flat_dim = 4 * 4 * conv_dim * 4
self.fc1 = nn.Linear(self.flat_dim, 128)
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.pool3(x)
x = F.relu(self.conv4(x))
x = F.relu(self.conv5(x))
x = self.pool6(x)
x = F.relu(self.conv7(x))
x = F.relu(self.conv8(x))
x = self.pool9(x)
x = x.view(-1, self.flat_dim)
x = F.relu(self.fc1(x))
return x
class classifier(nn.Module):
def __init__(self, args):
super(classifier, self).__init__()
self.fc1 = nn.Linear(128, args.num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight)
def forward(self, x):
x = self.fc1(x)
return x
class discriminator(nn.Module):
def __init__(self, args):
super(discriminator, self).__init__()
self.args = args
self.l1 = nn.Linear(128, 500)
self.l2 = nn.Linear(500, 500)
self.l3 = nn.Linear(500, 1)
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0.0, 0.02)
def forward(self, x, alpha=-1):
if self.args.method.lower() == 'dann':
x = GradReverse.apply(x, alpha)
x = F.leaky_relu(self.l1(x), 0.2)
x = F.leaky_relu(self.l2(x), 0.2)
x = torch.sigmoid(self.l3(x))
return x