From a14deb50c61b83d94b0d2cb9e23de288736a263d Mon Sep 17 00:00:00 2001 From: Nic-Nic Date: Wed, 19 Jun 2024 09:44:40 +0000 Subject: [PATCH] Update gh-pages to output generated at e45c488 --- doctrees/environment.pickle | Bin 339088 -> 342298 bytes doctrees/index.doctree | Bin 66638 -> 69197 bytes html/index.html | 21 ++++++++++++++++++--- html/searchindex.js | 2 +- 4 files changed, 19 insertions(+), 4 deletions(-) diff --git a/doctrees/environment.pickle b/doctrees/environment.pickle index f42c33bd2e564c4ece1fcecadbfbdb3bf64611f3..17d5a8043d87f690d76b1bc7a5456dcf9d6478c6 100644 GIT binary patch delta 39981 zcmb__2VfP|(lBRtFC|$Zg#-dAHsJWoErBg#~L(Ssax*C9)@b~<=i)*WE>KbcW zTRM8`Jd0O0)&iz;!?K!&W%boHjg7T+=TYf~<|bc7Zgz&Qw`dXnXujKXGgqC~fIQm4PEi?9thps>?t=R2I?s}txlQ$R8$3;mS}$qM_M!}L zN4y|&ZzsIC@DhO+4KI;+5qL52f?~X#@ecWVyTGNndH$llw~p_l&qa0{JM{hg*O5bd zwI`MvJ52hw`h{#ac6k5tZwZI2H+Hz!r+y)Oz`dbr6QKFcQ9cDCrA34N# zSKfG```iWPa`Pn7(KjT&G6Czor8T>yYhGSH{5NfM`KXDb^Oh`V^|j z!oj}TMKQkp`6GQp^T+ufE9xcM`Ccok7W%^j`;Uv06R$9$AKo(Vu3_qK+?C~;y4$h- z9ii^7*tosDy6d~`@KALZ^{06&8P2_6Hwz$Qva6&hKL8|ah;B?JnMWS81b~37qND+_hHZ@Tw7Ua2S z)Hl09P41ctz!R6%xIK#(yK9#;EUsBnQ`c0pz`d}!uDYqV9$c@sskWxk?OE=rUF?~^ zxF!M|@VsT7B}+U_wbf8+rMtGy-L$C2J!@2bbu*R*M19@tZ23^6aLYLnB3e$+#aQv6 z(%b4^;?!-P+>-?=-?6T%d@@V)6MF;A=9y|&}Qout!pT@P=5uhDA~9A7gu(V zwlp55aGoscBuYdlIWJPI4c7$Um%my{Qby@iQ{{h-j={R@>0zUQye$ z2tyRR9^>X(^RtzA~0P0y5~1Hxfj+#;0BUa&2B%>1@$ZH7T0?gxWS>JKw}da zT!gAeGY$bHthyeIv2H=5dw$L0`W2;q2hUa>KHzBE!>l;>1BK*So#SjOu|2zv8EW^l^ZSl{Eu*NDsfA@UPvQqcFMNLf&rTO`V zMT7DR;NQa1l7ixb{CU2cPsYvs|JWF(L)WR`L4VR`PyDYM`k&hQ7m_mL!s;MQ3CwY# zCd7wV4tMHyEo~7wO!`VPY5&;X*J06hamt94Hh9jff$;@07|-IydN-h&Jj;}=Fk{Q}S6K}Vi*g*5+kw52JbDQRz4nbw z%j#i%;cMlg&_&YyOqB0iFbAhwshJ74#6VP~^sT_r(jD?dq=*|g=>N764p}<_fj!D8 zWv9v&<%1m|S?s2gMZJ?aPkRJ% z%nSjpix!gr=pV{tL5#?VoQ@+H4P*P|+!*mO%mzlrii>-l6$|il@G=uG=i+4!UgpKh zcVfkwjD_%{*?Sd^edFO4+I1Nw`qX1xR7@KqrzVI*d3`sLuZ@b855$Og`B67Z+ z&WjUgYRhBgV{xLvXaNSY@MfdC=53Lpm*}On07bmW(prf!&$suA4)UpZ$Q8CB&mq3k zuSAQTa(H)fuGox_LSIy6qWu7FM#vK1tOO^wYL?6)TZh-ut z<@W6cosk2VMsEf53(S)cvZ2v?8T1(ZLX>woRJKu`c+*&>b&i!M+|WO3k7$$SS*fC* zIUOk|x0&3{CuW!V3Vw9S2jhgxoW?M6-aA@>j7t-DMKZ7~s1`M{U%IGt5=WiTO5~I2 zVyC%*^Qg%XQ%xU(_;wA=l3!$q6muIwDY@U!P2SQZ$`jWGAeXTcXn`&BWa@H#5YEAK zZt}$4MzQ%W!^%TP^(lbyt+^;p9=+JeGQZ^5ZBxVoEC&s&(w^()+x2Xm z&pmv!sm0lSKrFrt9$F+!!^OT^!Y^X(r&WsD0Ii4Q$^&o zMLFIU17tmpwYm!L3Qz+6yt381#gDQa{$a2oaQM5Bm>gcHE?UjobnK*-FQ4fvn#^KW zS$RvTm~9T@5K*s}%Q?khd|IBEr4`4?xp|_uqm)lf8YSP%6U)pZR?@fT#Uy!pf-&2i z>wtPIJDm#vs-bV&yP3Y#FO8Jf6o@_Mg`5s-S{~e{M`+9AWOSU~%UsT|s-7(z;;(0S zZ6Xx7LXX9QcNK|TM?s&sI@XsnKFR@c!AqN2`RceiKK5=F<5W@1^Fi;S1iPZ^5~qY(3i zt6jVG-Y4OzjCT*-p#@u3EATgkl9O@1HL|Da5JNr0A<#qJXU=Ee{Do)OXB3Vp`u(nHx5AM+6*KZB+IVUBO;mks~G#j zFma~SDRw=XEXNEN&!Uxz@3o$>tPCgvyyBcVIe3J)+-%{kz;I`-XAs|sk;5>Q=E@t& zL_;h`5tkkD6h>CW2f~P%Lg51gNsBqk)8sj$rU~Y{4J%t!NV!+uTrNtJcAyX*Hm+b& zC54Tw3ejvn!ojJPMzVaaLgd1reY`?snfo{vLc2%X6Yo2=wNxJLr$>ty<)M+HIPzX3 z$|5_E(W6AGctqYYN@O@#V{CDQR^CHeUaehB0)(3J(tWPzYkup1La6x)08kv%vF+Vr zIdY7cY5vJ+aOiZ`L}vsZTz>mO#<0KXmp@bkM?E9&km z-&$x6U{pAed9;G=f!1onyUSa)i2+?$bD^hYYM!2xWH-xD#^0B*Lc^lU<#bmj*P}a{ zocJ8;SVAUeI@BO0mC3RUBO;dfnZLd;s`wr%=_n@;(p~cUB_cI`DawlK2$yAe7p?Am zOFtZDPR6lD8Cr3-Zv#rftYR%uD5x{g71Pn{&%3-f;%$Q~4T zc2~pkLkz2iW5BHWSRZCS%`r3-1BQm;9o^;94>fBbx5 zhca)P7?pG#a^^O5ITuBy{`53)srdy1L(R+N@jY4xx#bM8()^U8*1UL;`G*4l2J;&L zz+j*@Xn^U{#ocC150L9Os=zqcrH2~lx-cw;*V$%o4#CJOGUS@sqEHr`Eru56AeKef z53vSqM^_MYY_c9F56;xn%(7t48lbmrG|n}r24ln|B{OP<=&TLxAw4toeuZcJx3Vd+ zJ6cGQokM8s{c?twY;vf)<$1l*Y-Y8Bo~U$?(AbW{8!v}JTts5kE41H~`}{1A&l2aF zH*j9)+SdWV?x~~aLVA2Zr?EnXxJPljt_Q{cpS!C_@ggThcF#N5ot`7cnIAG52?JB9 z@8+9KOPPJ;^K(Tv_kZZUcjfPMVeEgGG4k!2(pxsXZMfu=c_PL<$xxv(J_3@||0Dw& zMuA7Xt(y9Lps5~BFLxS!Am(uA@hcKzPSo;_*u)3si;TFTSUHL~*$Hq*5hq(7S|Wyr zM4V3?!De^r0x?FI6ol;GkS#>WvXRL) z3{j&JpMVhlu5Q>LXd&&>VNh;y$>=IQvB#nbUi_(~JRFenFiDBDrA$*v*7|xeHq1me zwgKjVFJo!H!PryG7Z@08(lR?RH%*ggEfu59cNql@X|cg&yzeBa$>zXiFpE0D=piy$ zlg)1vaD=MTzD&SLqx3eyR$ z+f>Lyn<2NMJfm|j$}?idB2`HJwZ6S5pK!3I`f~`?KW3e{&~!o}FUUbrCBEZxBUBp- z<=N}SKg^3+oxsGb>F)(rLoQ%g){t!+Obyu_rXjxY4Y@!y#KD>x!Xead#0y6F-y!c-()rQVWx5z0DcQBmf4%dH1l&#<4=4( zK`9m5;a+}rG(|EJS+^rQ0RTU{Yqeg9G(}2cR5V2r2~s?v70QMxy_eQIk)}x6?4C09 zpi!8#AMKT5jCDFBjurP$i$n}@xccpAA!Ol0TAc6ZNBUtaDM@iS9?rUF_{47X_%(;M z*q-CmU+tVt>R_vF^hJ5+qAbV9UIHTpTFV$yr(m$YFSo%XVj*eXkk0l zL@P09qBRZHaVI4i+1`e3@}ljcGL{B9%b$pGbvNJeqvcw4x7~9N8>0l=NYAz6t9V+k zqh%>tPNHS8{_)atok-|F(e`R+$#tUVDvV^FX76ydGeTb{)ko;^EVp+caRN~%AJpBx$@Z?V7Fu4x}!IU-A8ZG z-iXnjO~k$ULg`Kx9p&){wd8c%k#`J+!MwZ&&@`vVJ{Tm!dmxcI^FX5NOmRS_{!RNh z_XyIx375dm07C4Y0YrIG2<;490w;j(dsy2TsU`W_bc)&(c^c`ck*B15MElfafJ8N; z|K?Hcd?%P@^w&S8EsY%DQGXao(jDiDmd4Xsj(qPat%v4Il0QAAjf%X+CdA_7Vy;2}3APq_wqc7# zB!$2?+a(imCAORFx>p+o6V5aDYU3jBv$4T^T`EM~70lOyhw^=9AJlrsKCOq?FCX5g zjgCCfHuLt1`QBjW7Ce;sEBm#XFm=p+Mw=7)PTPDtD86q7^R?iid}kfdW{dCT;|DZP zF!BsZfuSt~#dxZbsO;jT z0a+NxwnLD$=58NCuIMOiSpzpLOc5iqSyjM)%H`3kL`0`dfI{(#Bw9%N?s;u%RROM;u0%e~h;8LQ>EL?&Rqe9K z!%o6ddAz^gTYh*@TNwE&LrpoPP19bsWIY*>MLCG0XE6skxVj7E35)` zHxPoQ14K;Y57eXU4$;Sz1kDTN0P)iMwpO3U2Phh@`=AbJ)Ib^DQ^_=#cfvNnV18PY z`>q#bdap_8T5nN#{DrxMWr7ZRz)S#O*4cpZoB)` zCQ5{xBGTTGaDt*IBmXGapyCJMuX-06Kcxl`27D3si(4>J8(Zat|DNcs_> z+?zgRb=wVVUa`U~bXEd(;(peyH1jwVooI{$;H~U95&&ROKVDO=4-ELwEKU{hp|ew! z51q}h%7^Mx$%mG51nAbIElIU~=%Q5RLw!<}4~;--?nA(Te~jLXt5cng-~w$Qazep} z&P-J{KQfhUzARPw&;zVi=tCXv1%SWF%7ylF62A-WvDn=kU`HS7={gLbX6h}scG0`Z z%^mbJ%yT#ac@!@~bv`={7q!=!b&S*=pS*H^tWL8sZDATMY2VpNA8lS4j#yiprnYul z8CES+uT7(qRzF0*7UchMEN$;XIa=#pNPjKA4O3C_+p;t@49-M0tFMr?wKrnw70ASc>r&(*c^Jzf* zm6Q3MS)7znaeAV8k|C8ZcTOi??waoGWRDh^Zu@dVy7J`%Y08)1LN?S;YgTa*bd0BH zIC~loImGs5ClrLtYlRpEzx{qOuC9nV;EK~jMm5L8RlFL zrd8>4p#ZK*dl17`bq}QBs>cV0LP`UgcBnUmV6IG;<%?k^)0D1OjW@N$pETpB zE@_5CNHeeW(1)51=%K%*%7F=bx_Lj74yvehlHtjrk?FWN4hqBwf$Op28&qkDZ}lS) z+PerX*WLyf!6n)EI5*4+jsU=KNX1f1)Gsu@DPUS((DOfsuA`mP~Qz2M#6iI)JRH1?; z_d|cx{Hvx-&=^=XZNdgqxSWkOqHsAoqm6J`ovxo9CS3lR4u^P_^9I=&$1(<{<5Uza zcc$wd<>*X(ig^XYt1UoYf+~G^2IL=u<-{y~l6gHN4@68&W~d~@M}Mtg7KRT6vn3fS zn5{!r6wIE)yLA~dBU{f-x*UJ-U{=pWss*fTv-O_B+|S^FXy*HAq!rAliHmdf&gRpc z5F^@~4geV9VE};PT%O@b@xSI|{)nc1o}mK4=M1Yt+UX1mX(AIEz{V|)_D6;t(jqfe zNP99vg|t_Z4K>$F@juTX$91qL$K?<^q&cDBk)K#*eAqVQgBi*JhqIcI!wdlcwOfkq z`lIG#j`us?giPgpLo(6%#6ek5q%SZRb5iu>T0bjVxFO$L!)P47cL_(3?_FpKsr3s1 z7p!o0T)^$32kH;U@IIwByh_bgZpSUg-?5Gie=k;moNgc9k<;zVY{ThFOZ3TMobHtp z{eR3Oyd}2Ny}`k&#_IKI-MF??&ojT^I7&}AHC6ZXOtt4;G(^8cepLa1i01lM#{XNU za<-o`DK~lWO?{#npJm&e?UpfFDmTesSe2W^WZ9>{i#V2Y6DUWyi6voBnX$sGVpO(- zv6h4x467uJRT3U4hjZrVaV$xIa$G{eM{w|SHKVd6Tx?0$%&V4gcllVzgg@gb3}Amc0N{PU0{|TP^Gqux8!0Qs>l@63 z-VU>{7AfL-s|XgyuquM}>rD|XpCfRBCHlzJnR=0L_4-bd7Agk!R#EKZEEUCm#tKm* zt;8&@H$^dr2#R73$f1r#H`z2nFEKfoPP4^G&m73iy7rc--|4TKUREXOCaWb2t(Gig zSo@^FDh{R1>Wi@%!+d+E7R0PUBumRa&Z4voI6_)B*t|BltOgj!$nxaPQ}itJ?qIaI z16dE(T6?Rk?A|unZ~H+XXzmX#?`Ka(91aCz#lM`~5C0YSICA2^{P1!vsSgS30Tih+}oY zC@5WzJ4ZiaPH>j8EMr`@vhi^YiT`mcSB(^*%>$OU`c{T;0W_&^V+dwl z5dW68_>=k^H750O2n_tOQlG8QHXTqrICRx)c)sHSCY^NXAj6D(bT(z|;8>)?i=Kgj z|5axxONTF6I(&&?l@34Q5YpkXpf-Mn6rnlV5h>9BK7un9)wI8CrCQiS7A zI&{>SbjTs3!yBt1`Q=b`_O_5oCjD^|Iu7(gK!5vx(eq_>jedhU%~{IQ-=rL6gOeCm zO&RG?lJhv2l(-+Q>;c)JO+gY9xnHhDeW&a44QobIZFI!HM%tTs$2a>tCza znGR~m&AQ1QJz=(4m19{=V4i29FRFRo?^!f2`vrz-oaa5oI8&PW1OWV_Q?dO0d`O)B z#cBMh=1Vy$)qEny&yVJLUvpZ_HNSB1qg=CHF0&ZEAa;rsmXvG$YDxJbAcf|5jzKn% zY|dH=$tFipOMaH_W%?W1^*QRC%?!0997>i&3(kDN_bb9b3vBI8v%pr2#*~m&VnZk) zt;}sBA-$?eKhKenZg19aHLJM>>{N6v2Y-K|ev!QI2ROoT_i}xVxs2l|73I`a)up+# z_Pm}^f?KFeR9r4^S*sSx#A>=##}~pdp*(43uA2BYAv4O8?!vpKT-m%*FGyO7KX{^a zE)%LYb55+(A2J_cV5p0gDE)Y$ezAEkM`5CLzySc$*#`hH#ihB9ncmx+ERbEio+}US z(Gw#XQl&}Xb`zY_r?&If0-Zz8O zBCoUjyzH4?9iwr~^t>EF-gllQ<*a}d@;*n;1-!50I#^-hC~CzXY^=2$&27ZrvyQ3W zeOLqXto!kfJnQ~GZFpAUhOo=gdwg^#kS*jt+R+puTFf9K^87-6r=Xcbm!)=x*A?zV^DxtiH<-v4WxC1=S-B-EVW>zcO_Spmge_IF27uV>k&6_xl-`#Go z_-zXCBX`@wX~Eq(KJMU0gWVxU<8ZfEID*{mMN7)#Bn8HPsJ!)1ouk{p<#xlljjP^&9X-lP|pB@CsOGdVF;c~C#Kx^m^s`ZjYCqqjY+vY+y_ zG5zc%mW5#{=l4@fEKLlnmM7--vzJ)bax5-Ui22g+7+PrghGR&;%K-s!Mg<$B5`Zu& zrK9ludGbV4CI4b7wcd@%6G<&sub z8|Y$dLbBCr#8!s2mrL&EP@0e20ra?qbuVJrJfw3Tt(5>fn9L0}p9v`l7<;Yca0vQf zo|?=(ou?K{-e{9QEtY&8!ocEBizUB@V1Ef>|Hogkw^mDH^KF|_iyo?V)+40uaA=yU z7KUK*@|~^gj}+mwM?LQ73+izPgjP#9B(PdCoe736t~4D~IMcr>U=uXczy3-619Q2v zlw}yp@|ATjV^}p)rOnMv988w6KB$dXAw_5#fv-K?zcqvlph<_1gkW|B@qer>{-i@k zwMmB@LSECd55{2!6gN2s?}ts!x0!TOq=O6uL^LBb@XCMR!+|kXnqPmZ8u>K~SrM*~u5?h?f!kS{QI`RP@dyKoe> zBo!NM&0YBL=5MBdUEpb;gWch$ku{}Lk%e$a=~QH4+v(KQFqzaNuj!AQ8CX0tlX5dK zWKs*{6JNjpN)I_KdL7cK{tU0uDPDpqT~w&jss3;1d(82S9&Ewdu^L^d(y8)7JDu`` zrJP-;(y4leRY}O~LOY$hgkvcYnJo`}s!z}?0jJ*9r<>aukzJLmEdjSNtP*fF3W%5I zyaOTOZyZYku678R{4Q(>zQl-Z0nb|kjxeke@H`3_Y<|uW#QS+aZ+YlLJzn1UJ|x8L zitPTfnV+(lcVSq?{FGvz$PvW+6ld-+iy488Tt+d<*3*y$p3o z%F;UJmR?3^^IvH3zkp#Cf51>~c_qh?fQ7*VXdmw;PDjrbUtfgJ6^}6QXPAIwaeaUb zymlCD#5!*r#)>IJ?Nz8U)MD%;%1~cHw#9|=kIx`OEkZEQP?LCPQifXhxxT|Z?5vBm zLKjozf zteAQvF;4FPjql~9_gA^;D@7_dJ%+4!Zh9JQ01jC>M9>JqAv8iv_*O4<(9u@jDVcg4 zrUnIGcqz`W(*2!&&^(jX3OdVb%#{ABF;f`U&QEJO6tfU`F*me?w)3LTM|)<9`pf1(XCccjiUugVC}LQZo_=*&&z9c_cwtpl3Z?CGlxBK;>(Gn^@i!bJClmuB0~(A#b_$4>(ooghH~JKY)_W zUyIcK+^#?M%glROWo&o3(^AWw3~Q^!+{eM_FYtDCTQ{<*qY))6HvvwzLf#H8C+<`# z`7#)xeHNsWuaP2D-**lml{o52D&Y`PNtJFCnocOFW6(xOe2-(OrU5xRj6ACu6*{KuS){Yn$&PLh~R5sF{ zVNoZu%@htnb!dqLot>GA6rq&|mbP*Rg>V5hDQ8>=W^@q$%C`8Eu{df>%Ha@F4$aXx zRL#*AGs$2bl_n=4n}WwO@F1^0>~sjDam-E!aRkmz#QDmadpl?{2hcDN!_GIU@!gpmh z<;cm|M#3tzrqEYOY{uGe!plCC^b}r(;|A^!ysSjTa=6&fi(-KdM7*8|*Ao$Yc9fXW zLu8Bb0W;^TBoGvMjC2w{sgWwL%`v*H;!mB?)1nt*VS1F3>a-gx_C8)d!b=K1B$0rZ zGQ7~UCKK`W@mRbp!3!PPeh|+m-i?=oc%f5|dDyb-KpTtk?(CU(rOo~uaQARKUY^1W z?Ma@-y{KRD;>Kls+7tL4msC#Tr58?|XcktB`l|LT&D$^tAAp@M59JzPn$IDat@M*a zJtL$08bw-4njGEN$ScO@yR2u=_aQkwofqa2CP2}oCITL--M_uS*k>LK$NdAvePV{Z zDc^{j@Gj7_82DAI)~ZN&t2})Cq`Icniw~lN2o3WnfL~~2K)>u-1F9?+yW49IeenO;%St#^NjR~~%vT#yYTT*KW`TH@t#E9>Wv-l7xp}|{D zDlz)u+D$S1>UM)xR5;Qt|RHBw6 z4-A6=`Bz2{4X~CYPm;!}#0eQa!dPfV4+c$>cTg)WqRxY9%@T-G%V3nbXB^BiIX-i+ zS~45NN~8i7Lo&ZnVQv=#0Lbk=D#2Af zd32)jhFQRA{EJ`$j={_}63xC0sTTA`mC}OV7>=Ng=8Dqrjha%b7WVcJRttM})vZU3 z`j%40?GQy7H;2%)V)j&{x1&n*;y~)4I$j@t2X)cC9}cG14mwJy)EizEpW^`21SF@F zCLmd*^4Mh}UwY0ko|pY*`@K%hJ>b(Dq?~OInKed<{P0X8)4Yd+Y3gxjsoKH54>4@Y zv41e_U~emxw0?IWq#$D8v_Gxi9S*@BELGFOy`|O$_Fu8L7Vy3f;j&Gs-_aN~Vowg?s4w*hhft5aI?vc(I-s6K$#Sj7 zs4%Z%!a*06PBJ{dKX|^8USL?&2gf*s`rrenl0HU)&^`c;b|3s2%tQk;^+Ci?W{>2I9fmr+#zcy6{HYTh z6{b$$5b6ZE$T-vFP_@{R$0Sn+a1x9);<+$7oaZ%eHzzxbS~{#6s_eLmVcCku0uH8@ zdV*TI5Gg`iS~Zkf>R?MPb9|$u+}mJuh~*?Ss2QcS1i;62|6u1| z0@w?ZU_W~=MmAakconNnO8~D9r6qtHF)N_S+s!4C63B{W#*#1zZZ)`!=Ws5{1tnNGRK#Z z>#y>jOO3usKOvN7j>mXs;&$uqv{l9v!hDTY1)5>)x8|=g)|szz6z;cv?f^h$_6YzW zGy7?1V88XQ$BZ4OHr!zdRw(#$mhHe6+A zFAr1M*-_+3jkQMKKS9^9?dp(3(SbuK4u17G%#EB-aQokfk=y?=OpOsU))^m|XM}Ck zB(E;_VaWE53YIIPc8V@?vn0}3M%$(^gWvTJ35y}wHVpyiedJd+6 zc5zTUmm)=IJAtpQ$8{lG08M(lHUx7`5dR%*@h3exs!e+25Yl7!9T1ZoP`@7cFyW*} z2NjOvXN<5MIxvo(9Hz$cPlnMrehlI^?p1uvS>fdK3jp{-T(P|VM&my76sN(p9ekbJ zub>FX3&a=l*iJBf;71!331znB(cVWq0Q~%})e6dJVp_zgDEw)8W#K2LL(3eYFUbyl zu_^<|WvnnYq003xQtP};jgbhAGu^W~{E@xn@LdzQUF5yW{MyY)DHX}+-eAMWm z4&42IhcU^NtbkhK3TENmUZ&EOPwq4}oA)z%uo^2xxVucHE4P9sEti(MRjuI9; zj^AwzG!HYR8tM0!QMPj3Jw}0fjAL=6hhoqN>hzZ-sX5Yw8C4gmQ4Iskx=ZZC7D zHMeuRz)by?aus-QVOW*cJYG)D{Uk?t9?<8D^6T)Fb?LFFo~xeN=E+O0Pe-%?Jo z(jf_AWp*T!U}rU)jFyRZmQxVCzFcKBe>`D)Wd7tR>R)~M!D`bF49fKmFUxO z3U52#1+V3&?@h&YMl2gh29;x41Mdr4v)7212am%mzcPXuXdn^Bkvxf~lFZ^Dbd}=X z@DII0}zb^FD7&1nJjNZ_+P^kbd{QV9YW(RIOfg z8fn`lDVLMb>c!1inG$*M1w9hH&_AcY7K{Vu^y|tceAb}?j=NGWP{P?^E>H{re_SY* zJzs{wYdoj%=K^C!Dt^Ty{ro5wSjcISUp3=*t#-*s3Ky#w6%L2<#mMmCV#7#BxJa_Y zMYIZoD;TFhD$r!rtvXOQN&_50F^~qVVR7EybblJ)uAnr)jeSXJz#bGwX~3S5A!z_; zKS|H_J|*ve&6pKS3l>%YA-+#W;lYI6=N>k4v>CK-fotP6A@7!c4rM%pmjgJT-3J%@ ztN3!EjVB~-}@3SsnE_1%J4pcmk;rx z=H#fC%gg9})3CKA8{RUq;nUmKy=5dNf6~%nNo`$oQ%z%Qm1u5kY-!(A+q4*dUDBHE z)#a2UMw-lf&q&n7C>edk7!KtK*7p-5S?i);a_l=su53sZrWN^nS@3CZ8|kv;HzQ8V zwjj?RG0L=J>&M}@q1e|)G=H%Qf_r4=S0PjS_8mCYJDDKEMR z$ozO$^fd=vv0{>GsMh<+yji4X4cO^&K+%89Gg;*okd}gEs*e(9hNYb9L*zFExmvz)A zfKQ5sW49|TyXs>`y7sxn?vr44=^q&b#j&vLJ|K45no)s}1FbKQg*MJZOo=?&%hg`< zwv)$C8;SVYh@NnYN9m*hKi!uOpT1st!mo>r4-BQ#bh-36q>>K}@4)ox9vz}r;^C6s zPmLa8w3AVceD6~uSx)=b7|gUef*7lX@}Z+KT}ZZcs#y7cJJrql3d5pcepR0vZuok* zzh;c<{QtmJE)k-$#dcFL+eg1J62$s&Y_IrFY$tVs5B}}@(r7Op2Csa^oNR8dOfwXo?b*vFgJ$;MwPcKfv)PFZ_Y8abJbrF&?loI#v|UB=9C;xE53vf$$aVY=riYjF}bb*TL2v@yid@z>08b>ML+W(>LcHG5qd zqN|+xyHUdW+mv1Z0NZky^Ca2N5M8aPHeif$^g=9IDDzEMwj6)l=nb!vB|wmm_X+T` z1IC#rAd=3p_{?H_I{#qw73YNIGaaE7+O#p;uqVke|29&!O%|*5jMc^MT^*(QBgCF7 z!tz@io?pdDIBNBGi{GP+Uo;xi-@>wb(9bFmDEdGxAy8=9LACwtXQP{T!s7lN<1T+O zGQ`(mxqqR!XO9VRHx+l$2{9@R$tORCPCNd)k)ZPs_gyD#V3YV643Jlo2hb|7i>oD-cj5kG6LuvFbFbD!`UsjJmtIMMT5LgUVuo$20|^ z`n~aOQ2oHv6SO_l+%fX>Nh{<&PDO%3?qgI>`reOinGXq9miRzb_FXJB7P-X8M$I)4 zK7JFfvTvyR(9=Gz$>?a8J(4}9yLxMpLh2RyOQM1hAUdQ5EY^Y z4WU-21TlWvIiXSZdjh@ zw$1atPOcu>)fUe!jHf5Ul`UGrvfI!$yX}##3~jH)ZVzL3w&@xGUw{tR;>X%%2MTO2 zcXoF5(!Q~He#v-(7Gve=3|D8lybE;CXJNU2+&1^s(ZGF2S68f-FrGSJiytpfd~cj1 zE2CUFTI_h~`2g0w>_jMPJWldOP%i@;cyG4FVWiC=*7x2<)4bV$v4oPcvJig5h@bY_ zSbxkAk16MQSQ#rg&nRcI;$rFM6>v5I)4(r(GcvTb$Z8O)>#Fe~smdg|DGsW7r&ZP4 zsH#*xT9(DTinLooYPeI?@cQvQoG;N{w^$tFEJ}O0O0<84uy`qyMS^R&CMuQ6|Ku!2 z_JnBsdkBkP{4D%>(x7z|xi20scbztd$ zV^>9Z4Vj(jsz}GwVK(F!XW@8%4qj&B@P0?;Jy*_HC@WLN(& zGw9b$x~?YtEV$p`Jr}N!7tNtRFtJ((xJz0W^{r~xyl5~?iSW*gsgarQJns*hM8YYb90O4Z6sC9 zgLYlg3RAxN1zxLsvJmzTL+eL7qP;&E2_sM}Q(`0<_FRTB8oFV&UWS&`Ay z4n7_^E7g@A%|P@)#fRmVR98kX2BvQ+E(2w6Xlh;4+LGj(x;0iFKSP)?jEFwBn4KU` zr@97np7im>JLLE@SK?qsPG4eNmgwi%bzyVe`L%fswGB0RPQ0-Bn~&h(L6}{}nkd-IZ_EpTO^!;q)9pWFf+PrZg|{H25_|Z0U&rd@zLA%7SjL_|8^s zX`23&%*%A;S=t~7EpNOkmt+RCL10?ps4tTbWV!~eQtcx6DqQct^&Jw>>|IM%pY7cU zf4!UF(h@n59AI=^)3TMVJ}`V*TeuM{dQr}z94h9$4yoUVOSW2Nzz==e*n4d(cK|A3yn;8N0O0cdp#T5? delta 37613 zcmb__33L@z5-7L3AAzKS>_FC+l_ZcA0$~YB2wQ?6C<=%y5u)%|5=d}Ih>Wrr6nudz zq6m(T%ZP%YaX}UpMM03!QPfdDaREh96dl)JRkz>k>X&5x`R9BNr_-;hZdKj7x9Zki zy8GTABG-HnX)JZE>$TlDpE+vw{MtqJO^qF@=2y+Vp>B3vQ)9>4*|pVkXV0&Od)Msw zGpny}YV1_Iu)20(&5Y{0y4mxuX=*e9KWEz9*)yu=*Hr^q?cAFBI`5FIjMR2|yLOEo zsaVd!y80%MW&uEq0{o?U@63u8hWFvDv?VUYhB>$^Djg7u8bhbeteG*tYF_oU`kHCA zRrRx)7B^*hP===iUXZz`BVPW};1Y~?23|t&BJg731;uze;RX46I>TkrqN`^0`g=uB zeHyY`6*TVtUtSy#+n!ji3Mx9Nej(dcLEl&WN;qV_D(Hp@>KC$K6?A=*`h_A^1?_y` zH=;x_tAd`0`u)WL-bZsPf>6d?O&Q*``2*$d#iE0EUO`0%l7-Msx!q$MyX55L!v9N# zl?@#|EN9-#rZrS4UdjNN;SI`jd+*LK_s-9|S(c91gJkyST8MXNUPZ?>R8du8sCRzB zNbk9v(ca_v7kO(6t`eH}Uj;KnyB&RdkBpMfriic|ca40sSlx}hy-ZVg_pbO*sJq)% zt#7aHdaZqDkh%*!{8MLj7ya?2rqE>ZUM+6N?Wg1Q?jxa!jlnaj=Fglxv#K6?&*G*= zk=5iGxntKicNtOng#}HXIY2X|$#Vme>Hyg>{rm8aa$d9uTT(rCZgo{%wR?U|eYLxO zR#iP*s@)?lt8mY*L!kSH>U#I=d9`z^=T*>c@IsN5Yc!o16VecrqM_i^65AA`Gu&WiMG z4F&cjV~#BABHZ5Be!EB9jN%f!i+}GU{wBZI#1&n_9Hcj|H$;>-?~hnTspJIE%<(?+ z$72!eM7n5){}wkXDVxG%*)A>LyW!8|nES%owe#^^3e_AHVQCU3w}p#D?~i{LicmSd zyNLIW_-mqQMped==3RZoNb{Yjd7^7#4v3P!3Q@FfzPKRI2ywaCuM9_j61-!74wb`u zgB9*w-bD`UEwaVGRrR_#_#Kr8U7}2G)WzjpoS6Mk@ifIWMOGMMY%2nOH$=7gwKcvM zknhI-!7|D7ihwGte) zOOaEf#k-=992W*%st=MX%dG1v#*0#4(O%vYKew0tyNTYRiH`Dp!li)bmm52XE>L_+ zH|QQtiWK=&xNys??x0peGqm3inz&JkyAj!^$j9TvlmO7QcyUDlC@evY0T4=%FC>W6 zkU7v{JUj7{B2OoX&meBRl_+kGeJ&h8FW_YtUUuVUFJ4{_mowd>A?*PCSmarauJlj1 zh59VReovjQv+8t@hI>!0iIr(dBG>o_(8x(yP>1W2M6LEwxIElLA_o5+PF8=(orEMno$Tk20m zn&=@iWLS!rt))e@E~P+bq=S^?hyW>xJw%X5ka?M+LgKv!LNa=Y;o=e{x^r8Ap*_R#W;*7%Y@O;^j8!B%aBN0eYxc? zEnO}>tqq9c<){M(1DyTdXv5Ic0uteXQ0qQoemgFEoo8 z1}v8*m!8#o0@mAbQk7*_l!O+qNU=I-UYA6X(uA&*r}pi9$zLpRK_Bk)dpPd#yk9Zdz0rb z1mL~p>^q=$fU~2ml(P%fE}!yNXc!}Mwv| zV%Ka~qDRP0ziC0S+*imQUcm1BNe~!Gh8@?lR4 zLyOAqf6y}H?W!3n9^c7Wk!J4dVC@cD$s0*YNK-)9BKg345o|iFQFf$MZeDBzNAO1T z*#X85@3x{2(tV>ykA4Rwg?50;yLcC-?z{_*7n|GtgLG4*>b#dv0_W#FQ$jNEck?XM zR`tTu9I`n=x4U5nIXA}@B1caaO{UQmB>MXgj=b%EEKMqo0cQb@X*pMKa82o`Y^5{~PMc`_&g*c^V8yP7}A7 zm0T?JnxXQ{Mx9n2C|yw%>&6+4U?re~-egX50H7aT2>|GvpdWV5tySVNv!2nY*jn3F z#nxJmf!I35T*)99R<+x^%5kasAd0GYAd*GZGW^Y>D)0@PWArm04CDfcweJ{LnmYm! z+lYO!wyCSEs?oD!pZULwpup|WoB}t8&>&QIHH0$`l?{uGO7nfL0*+ps#2&pIP#nGH zb@e&4c4b!#$zqaR>k)YrBmU$}(Vc$-fZYt9*^u&f>Bjpe#0X)^lk*@j{KnYLGX>qN;Y1pcQf(c=Oy0lV|&QF z3x-R6yIT)8Cva3C=ehGlcni*2aW}9=KQF`+F+f!)6Cq{Vq^`2zBfZRYbXtEL;XdK3 zAjXl*}n1?tV zhP4E_@LJ&WUN`y3wV0@JblC)Bx_B22nJ>o<&||evyUDfJiQXZvAeA+;9l1_qMcjt~ zF8)xrX7hT{%PG${*tMX3gGt4%t-?F60yBX>yhjCf2dNa^JK!C)NC&x~MhuSP;hoB& zO!@r;F)V^l2M85RGY)L+_P0SA(CCui_t)dP&AP~gKb3$ezW_*)KmZ#*c1Ec2Bm8DD zqLs*so|(nL4T~Y`DCQ8%c_KIssXM5<{JuA=MeMx=CNYLf7EL}A#Nv>HA6TVM*L5R~x z-erZj(n)U3kSt+8@-kdlXWjF0cQs7|HW#lHRV~?kxKfmx9b)W01JF_HN$;RnD-M#xR>#mi>(9r2%NJA%w&6JxJK+X?`CQ!wePglzLR6@Y1<HruiW^M_6m`FY>Hf3%3DZKU{h_7yha6+8eV&0y?Q;QY|J1tLA1bvSTuE&X zA+^7f;yTj-MYZ22wY7mU(w-X@AxzB;d&E#8k}6Mbv=Wh`Sk`~BzZC+&*WU`|)Ax!? z%nC-MCM&~Z{VWS(ZI(05s~IUJBQqGgd$h%|G)-B;sMIv&rdWGswlbDxX4;-RhmI6X{j+PopAUVPIW(fKs0OM-Za&HYO@H6;3QQ2 z6fjgxtUR?@91`8+_AMf|RhlgeMnv!!=QEv^mp~`=CM`^luE83p84jwhW;n3{Ny*L# z7Eu}vho{v$p5Akve$J3K|*@Zu! z$IAh{?1#%DYe85QSV_byh;RiFtypBO5oai7w4D1doW>o6g@a7kK$G{K(%c$Ua`!2% zul)TV;+m;^%@?yy&j~C*i;kqnN2tsPc%cP^Q#d=K8P>g+l28(shJloZF4A|0PhZcT zSh?>Jv9tqP6F3{VtvN!jc~tZY=^6)R$iQJT|BzOO%hI8=NF2#9@sEj%#Qn=XkBMf_ zW7@yNVJoL}mo_mKx5^xY9V-OI!H3e~z%^hYcb8Tg5oUArAys3h#aWG+7N;6>$sVms z)<7gLf{T9v9wGJuJfb`(P%XgAZ$2|jSQ_iQS6dY_6LD0nsR7lhVwj|T+UFr05cab6 zw#fjHyWlc=+AG?EkoBzKmRGc@kh>Y6)2rJ1ArCVEQ1p=ZN9qG27#ZNfBoD<=TC^@t zzbfQKRs_tSE;rvQdg7KMIK6jGNvzmGx9j`pNv$!Wq-1p*CMEf@=9&0Ny$fe z_eh+a|GJhF{}BG*S;<|t;5b}H%5DDYb#1r^IcdYua3kc>H?(CTpD<|WH?>;rr#QLv zO>Jn%&kO^2-3VHbC)AQ&8vTTz1cE>wMj68 zd-||8HDplRe1jCcP;&mn@65e}hbWZU~% zsp)`XGICG6KTB91Pc!_#fygcT0N^)*eCY%2s}McG;R3_t(sI#WYnNd0 z41wKrTr^ND)hcO-o0TEH@c^*-{(hsrEToXpfISD`-cbj6=q5c;&i+`t+RV4{akva0 zxxSZPtmXLR25a#NKEb$J!Q;cT$F+_^8rf5K8S3$la)$Z@${D6&SsJIR;;fuuNt~Q|QoAIAP%3UHwhQCbFtgA%%m4s# zhIgg=lomf8ZBbPhmRG!8KBE43`UnG`h(GsL~`H~5DCG^+{%=qIm_b! z@Yh#99<1ML?q)P<3iP7Q?{Uu0+OPSD6(FX^98571nddl-f9=4IMBgyH9f?lcf{*zH z)4C~d$!2j}>mamtZhJ#7g5#-%gA*wh@&4kgxg!?kxS=s97Ukj{#iCp{#iFg)*C-Zk zOHeCpNq>NgIUJHa?_Ymt^UaZ1+;VL69d(kz9Lm9mbp00DEfRJir?1!B%ZvZghMN;O z0WG-kBBb->ZrkVPadJA)FxzeWTs7T~i)e)f`CN(H_PNkW$clV!HQr58WIJ!zE)+!0n}!T`CCP!^_3ZfP5zM{!A*K*b2<6W1`cAVa*TT2m zdX>!1b9I&(vAStyFaq-9QU?J1xEKJ?ub)q{R&TFTL+4~hr~G(Avhw2z97BFwlT3cR zz=1$No|mlr_@-p#$7#vRkNYDfRnMA(Oh_g_cCaQt<`CPD9Z>Y+@yXzKW!ku8I)@`) za_hI7PjGeUDAc1?4IbqfS`kfr!$>vvF)*!&?oPHBpkF~GTYyeWrUhtVN!!C829^Z` zZ4ZAPi1><_7HjW;Ens^%{A^o{$s!I_$s!y=7MYL+$%F%X^ywtIH%(75yQF~9zAP0t zh8<*RxQG3QvsYusAWW^s7AI2>8vyNxL2)qWhfA>o0pROAg|ab2ztOyy(Wsz!QHr16 zz!b*M3W{@C0Sbz<9ZV@GHgKBOgW_UFVh6<=ZP~N^vMDHLu!d1VabGqBMGmIA^@n!C zpvXPYS83lO>U&@&SVVmfSyEWsgUV1?+>_EqSUj7nPjH6Cv3dGN^BAv&9TwkZU^=k` zDgP4lO9oYmKBprszew>V9r5!00)3462QNe6@xLi{c>Ia($3?Wlhl1CU6c)TrBP$AC z@u_fkIz>L&N6(1=0>M0Z9pxfvH7mJLj}c}Hmhz<}6ulbz>ercW2Bw%*?7de#|n<2m{pZZF>8hcfiY`Zs)||jQdP`~PgOB1A1SF;R=Qu2 zN*?N9O&-c2cFb}>(e;L>`rJYk%7$M05Ul`2qML1IN|8t04*-9C<=zMNrRH`@!Z&x|Skl)4ZD;Gp!3&1# z+ssN1p&W$MkbV_uDhJs$LjQ+3ozs((U72P(*~B!;LHd8Dk2bGwL0O-sa**2@#?C?N z)9i!QO^ib2AW)Wa5KBVMC~&8(oQiaL%#!dT!`KoYQxXP`G1AR97=@AmWl@5dDBm8f zUu%BK35fY87V~oqV>ACmF?XNSGt563g<=k6nfi2ApliC_L^hj=JVa&mr!Wf4@7>kg9Ow{|E4k(7P`gBUY7J!^d z`VsRG*MzdJ1D5g!IL5#0f099=eJiz3((R<{GeokaYgjrZUBL1CJ)q04fn@;!Nmq{C zwpUL#LwZ1AU-AQ-VF~r5Ik6Q4Ws|c55OULWSb%tMvR-6YYff8|shu6IK<&&S)Xwu? z(}$WIs?Nx-=CU!FlwOg%`LPqGrKBR}3lb>zo62KvGj^A!fcejxS+ z7<4}pv}i5yxD1=FM|n#(rI;TDu+TsnS?!wugg70*``cD|LwPcpLs>Ezhmgru&xR^E zpm^w~Q;pHX49#HO5Y6Tw1G9-oP@8;tF4hRsz>V-p0y$-l{*0N=iYohMXDIt+a}3#U zID?QMm1m$I6>GlUJ`xF9*iQqF)a9lImInkGuO<*NH-PbiwiuJ~9Ga5x9FVfZ25djS zqhD+~z;vwD%O#`bI0<#QtPEf5A)|e>K)>JI$x11sZL^HFjbmuqM~_{+!N6p>*8(bd z5D8jZZd(Rb(7}}|$RU*f(eoA#D4y}kU!<3qXPv_7a8^gTdyx(clnf<9dl=)it^VrT zlePKib850SC7mW$S3o4jEHW{Zbv&G`#R0%K+!V^&u7?CDkI_&TDY9i!jh=t^u`oCp zxbFr?N)KT_>)L6*)O`%FPf%mBUzkR`QxXH^=G3v zm}-V&oA>0d2sqNH@6rCqz=h?Qh*rpGO_`78KEwDXbQi#sFrmAEf+@#*0yPfn0GB5+ zTg@?N%B~IiHLWC?FE_xN)P7!Jf1(+_kAYEz#(8W%=i}viSLt4+Pcq+SWNMlhSkUuM zrf-^em3fAfV@@W%Aj`su1=xUv)}`|bt+1fPXji747=^uutSB)G&Vsx5GUZ>l>3Q+* zAed)HySYfpjBdIe(&kVssK?q$dgt9z+YuG$J@kc)EsZ4&2klEIn#WRkrKP- z9PG$3-{v%}JLVxq;&)8#4O{ASKB-V2Yj($5Q+elIUYOl+Fx4ypix#OP*}T8_s_mHF zb?ym`L7vwI@5uAI^lZcPUR)Qr!c0><*qoVVW?*q&7xa6cnaaVX5|)|!aR^QEI1MS; zx2Nr7qd7TEd@6d{GrVDRKQ5vb7UX1!J#8lo?T@U;$>!l*f4SyfJtw{|-g6&I;u6Wn zf;Z}G%sLMCEdk$b)-o{p*a`;#eC##=K!@ww)9GXPGdksC8+s}q+rTm8W7~U@kL_?E z(8r$YseJ6Ep32AO^;ACAfRxYXc&2kxu?Pk4t z`Rfwf%U2f~0C{677yIoISgYh|z# z*UG@Q>v8=~^A27U+r5@^@QEMc5&3D4>n_>z3BA(1m*dFMI5nxep_f`q3Eir%HMenk z^0X&<*`D@jFMBQJKnu!Od#SaQ_ZS9pJZnGa)n4{m$|**n79*f6tt40yp4_HiVgA9X zNSFUw5<;@=u4GI2uaeODY1lF9&M1@wC~HZOM@Q?6%mPk919y(xw*#i4r3_&+&&ekB zX)R?8qafxmhuHG8ev$SlJUxZa$G2i*ibS{evLjL0eONt;L^a6ozFso-Sy%|!fM6bq z{>II);8}>Ci@1EXl-sP=n+qA3qR=V_0HV-x0DuE+=;dDn8S}h;hxst0Q&DJ3wu(Yq zIEJFo^VxFCt40BD0d-`%Ia@`c{n;uC)nuzEvnf zsF7&_ghSN=NHdp=^HEMh{op%)KcM+&+5!C&^B60odh)wDswcn8F*F~gZOF3>Oh!Kw zVAt=Ez|kdWRSejYL-Ahira zrkfW~yM;*5qITMZTxGfyf#m@~oo+)QVtoMPjcqZeKIhPs%;tdDiy#g#ErPtnC8Nza z33a;hxo9)75#xQnciZ3~*`)%G-`<0LkroEvQBXw5Z5u?G_BV)8m>zw@`QqxpX#n^F zaiL6jUw_E_gVCt@$FC?$tu~y_r4&W+v(lrOJl6G)X;%Q)OesCeHdY>wdtJ8;{U)*go8<)Wy&5WLiMl+K9u=%^{oQ9b7&R7js8Z- z(mYg*lBIchZ6r&NebQ>OH2Apwym>pXmz^x#%E6E<)ym^1^m20@2UDKJ2}#$cJh|nh ze$4zQC#AIHkvuy^`g@+8BE8ara!;O0k&ZHqon!3Dvs0wwj6x+aP?i#yzvsyXpX(m; z7fwNX{Ah7+pU--RKLPs@xkt-SzkuKn$tV4rAV3b$QekH1~P=L zer7%h=xLF z-kT_BtJ#6CkgXD%|7d2;!A$T^!3%yZ5q zyl>I;_m}hfy>iz#da$+?R#S1`t+83ZN)G)A9{Mj}%2DE3=>R}z8UX+ZO-*_J#PgvG z`YN-U(W&9Osz43bRUAW!=M4ok{k_S7!0GRG1uF5ptw1H7xdkfmEJsS7cvcnA_~2ko z;{%7#u=?JA^#P^>isR+f0*d{UWm&Y5EB~6LZ!w?c+EDWOv{iwpImVxT9%NAHE0x-T z0)O@y_7)=9c$q5~bTVQz;7Hl$slc*;u(Qvf0lF>MXjFug240BWp zEh5&U6t%4eTMOhM14E2uW~V-Ow^AP7v5)fbjvQm#C7FTALlWUNn7Fm(>&K}`(9$r# zmU`2G!190~!;A_*$jTt2#K%=W7i5IOJLbsYI`$!3I20sXa0uDr-(8G+(*eae(Y_Cl z6GuXg73Qr>xH7{nmKkp07~2ezfyoR_0cO~M1TD<~Y{?8y1(pW{nnB)Y8W_Tnr~JWW z7MR}2w!kgQ0uJ5C0vw`TD9Y$>I-qEQo0tV&H-BcjsLG$WDu141?8=*kcBi4rcPw=F zfzC+Kvhu)|DxVry9uU+A3K;^Y=qvs0|KD)C_UBdY9m-MdIfQDT7;99R4k*_C9IJh< z+FYK?1=Bb&t5CVYERF#aOfef6gld0FK<$?yLCe|$N2>jX!192g+CLtEkb}Ch_J6#a z-vVNm6j4U3>ClZV;DFdODF>KlQir)LjG>%_VrX@txfW)NVupP3?w4_JUKzD>!SM)lC3^FLf%EQ!|Z+%sGrkO%-SL z_4Aw1m+`ZviYr(FT1mgn!IY+o_j8)or-~aGi9JTFPm1<3s_E~R?=U}F`kX$ zV5%EtYP6NSG1quSE9y(nD8)RXo+E07ns$_Vit4kFZ!UQPYzjNdCs01kCBH03J4Njvkj3rKquG!wtSuiVqe=(Yq8B2+bo*1_w{Yj4P@pPRF2UR7;IW)r+H z9lKV`w=tYU{m0)Rr_lw@opDhXea$o+&TRPFNwJEL>qrq zxJ*77FSp`_mf)x0G-d)`7UPAcNC(ka`+XMk{HrfMaC(`X+|M{|_UH#V#}-v;Kb+d< zYYp(cNeP^u`K-u@>AMB0XFcbgj3wxKw>4O2-ffUd*)JGgG?CIzj(Zp0gD`clagSNv zLQbhA=cyEw6E(URC>jm?Hbc{>kjD0PHH#L`sBZG$vm7lXw{nW!Cpjcg^3)cRCtH%k z;5aBq7R9n;kP+P%Phhu@)bbE99#Ez^R*O2`&_dF+mZUYAE$bL**AWkvw2<7&xe}k` z$iO-_wUE5llKf{@OUWH=$#^KCh2)l7>)7w8&K(0KKh;9=6PDyE*nJ9YS0)*^YFkKd zWyi5i$#1rh{JJH13M}lXcKvP$v@34Mw2;(t(GC~)sE*-*b^N@Aq)$mw0Sv$>XfW@( zF}86r$hQ#OGPuiQLyhbX7=uBuE;|h~?l4_Npbfd!U;Q8>V($yr7)Jg&%xE?p5PI}G zX@pVb1k-_q*G3rI&Az<6y+~NVz+U&u#d6I=qg>Wh80F?LhN9y^;hdPpi=i^F(%5HC z=9IKxG(m1DHVS0zYg&wUX%VgboO{)fE2bNrm zFH&oa8yE(xW^KbRFQRoRI&l67qfqNoP?i>zE-g}CfN?ol!tQ& zO|rh60tb5?P|U-r4c=zrq4!vMIJ5!0udl4XdVZIe#H2Mw{yEi1aWceN+a3LJKBBGY zk7t5&<=4{;n7K0k*38wi$a#**uQH~X<^X66J4jV(9S7J;dz}%%ED-+{lEop#S+3WYem|LrFqZt#hR3(Te`#b8PCb_I;WdF)) zV~**d+gELj(q;{iov$`BO%LO&`tj8Rs2|r4@b%;LYmBUTy9Zb=5aKLh%F++t0IQwj zt&r24G|Na4<_0c;X3y*3O|kf>**cD)+4GYOLKXdIfVH+ELCdB9jx>9IEwDTwX!iVm zAmZHs#vioBm<;XElnl)wWavrrjFpZWd8=k6NOQh1#Qcp5$LVxnVQ-K3;+;VMnfOiv zS;uTq7Q6o416bG3k(bsQ&zm`{l?}Zz|yp@n)Xrn+t5+f3Pyc@T5(v=UwvV~F$m%N z6`#1-SfN2U#`i16#H!g6C!)dV>i#sV=R>e>kn+vylLpYNJ_&t+X7%}l;ErbX`GaUy z{}<+_G#k^3)Z0f6-D1pZCHY&t1X`*Ri(3)fe)~xHa0W&d8n0L9#N9jK>k0`4t`0J$ z!MMzv#K_b+@xX$fiG$S1y5L)3bgkj^luFGRWN#Z^Gl;fbuUuwKGMBfYTsBChbn6%f zx{8(3EgM8B9ew`g?~FnvT~L;iE=$5Qw}FIRoQiaL&XVvZ!`Kp@V-k)r3MB!`atWPR z7?+#hb1IT>){^iS!`Kqe+7je_x55(jU;PwwC}uHN`CcnVrhKn#5X<)_qYTRTa*E+@ zvg~t*(JOu;LV3DW&Qwt^{(IsM;{{>%!9u={L3^Fgt~OSg`3y|koD~iLBv!)#0EyMa zLH@+*&by3z&6$i&g@ozFDwa;?7)q?JFQ&xmMh5~CD{-w{;5F!#-of6#-h#6w#VW(f zDOMTQ5G+Bpv&Pry#T5S>A}BaGAXTqH?!qAy*ruQ`cpRlzJs|a&*Z9PIhO0!Q@OG;f z+c|~;8=b9slYuF)y-ro|ePku<5aL--%aQpHKvD!;X(awEpg1CEO!zSXA-?zV?W7$C zYv69@g|>K;O&ki7O&pMY_ZUs41A^bJkvVIrUwSb{ax7WwNvFjQ+zS@#KbZ9+vRL6@ z)$WBHV_R$t1Ea;XQG?Z@wy#=ak)Wl?fGwHq>cH}VAd_7eh^P->d_!A|$zBe1$zBc! z*egoD_<*s*bb#q&KO4DZv>Ycv%V`CJDf{sCwXIu>ljbf~N_ot4mgSz~7~6738JH}0 zIG}>>AVEvZ0b8=%>A>=UAj|z4i1;~x@$YRhCd)b0CChOLWglDqVJtT}RP911l-Qkz zx*R7V!#zWWgRj1cRfc^Q4G!#q?-t>=f5dP?sk3PC;T_sw7|r?O216wPd_k+wJM4oe z%&Ck-?JrC&@sIYEB{bSAcGmvFO{@UzFI>-f-lN@JLNTq0QK>V-Yf5OQu&Klm%Hr)% zW_@n5k(DGxaH_D<*6DiE2|hgLw*(zg%jbc@|KSK8^?fz>r5MMHDaAOB1u4ZiijpbC zI9k$1it*<*==hFhCt6?Hx7~Q$Ji`>XQw;M94!(GwahH0**=;+FG3I|cj!vR+YEt-@ z5|vlX-)Y=wb}6;{i8>h+QtHnu;FEP>&l%Bj*E6sN)}sYwN~y{#3K_;8lT%75uSjV& z^2~BZK?5@^Pl%_W+u@6ONyyFSm7Ipg{D~HS55w5}Co2B5Sadz3Q2Zxy{wRtbq-(_% zH2j||v4{V#-_V3K{BJ@8FB*N~e?c%G|371x9!O4@DoH6P(n z2x8g;rShrWkUO^^&)j1SH=l2X{PjIXwu5~AUSpd17N>-jP4gfED1!wN&3oZ{GY%2> zxqxx|46k_~FNhxs_{ISMw>}L3aO+=6oViF)83^#@HZ&&bWok^)IfinP*fR3lcn1O( zdAgU8-}Wd|e!HPmr68Z94rE~K#k+bL1wjXA3W5#@r63$a(XCw>4GVvisuX1T>&B<% zM6L-bKi*P)Jjd9>!aN41VZl@8Uz7>2K_nXzHk8uQZeU60t!@u23kVnzawMJKk%8DI z;#{oVTBc6>Z)lS{4LDB)mRH=bH1`G~UJ79Ra$Aha)(%6EtsM~9v!7u)AT&y!;zDth z<|H&q%{u}IJseORyT|z(sqAgzN3-LQz|Q3wqB@t0W1xMemTtmow4n4_y972|;{I@aLLzL&GZVOj#f=g)=mp<^(*{FBkB zar#jdp=RZB2#wQ{904{`W=yzTE{DrSAa zN|GWtPQPdCw4Zc>C#1;&G)6lDnSYGtk=a*m-xz&s8I94mVwa^cI-wlyXpBxM$1ysD zEd$84PZI}Xi87%TcUZ#r%)&?eD3J}x9zw|Mb!4`iH*mo%IyCd0+vVMpXj zLa-Mf6EWoiiA8Et9sbg$`oT|)>-zF6fi}3ZamRtSFp#+?4liYRp=s_(9G|`@QExM%^RJP8o6V`MIg5jKSKBa{QEc z9zLf4A2TrId!HNW@~=}yf>s-VIsAo@Eq~1xrWLst2jDBegp$91ZbWIT0x)B~Fv>L< z0KDRJVE3Kr3fCTTVhq~V8}lWU+3v*1!(SSam$ZZ0d1j!=v7VkGPTp?>-M?EFos{Cgfi{3avaMNoIEdlZN$UtAHu#hh6wmV&^Ne2Xz3R& zw|!&e!51h2dU1%YUxX|>4H^EqX~C_tJbM;a%_|hk;ejkq1j7o}bKk&+PIvDO3%7P; zHyggXmj?gNxUA&=G8XYc<=bDlRW;T(O#SlWHtCF5O5}t)t7CulEv)gfUiZ8KmzAD3>3Wc^hu}J@o#!q3aTu2gvc>!Y5)}9lR6Pbdq!61E%YqbcG4% za7cpMGeM{RFM1JN zc=a%UP*~Mkm1+%Fq;@HjG&WFDk_+O)=m1HTO42GOX}({Qm_yZ5;pZZ^tFMlM=VW^q zY;2JvD?aZ^w|b6t7qa64zmfQBD+#U`P3hn&@^`>P9bEC+OPtx^U>~y=0+}@r$8H!e z$9`pWCspk6BPrOGtQ}|7{|~D^upB8q2&nmcO0##AX7sFK^Kie7cQS>i{c6|>gU1BX z_zQ;)sye%lxOi}Z?^$(n^>;eVfX=RT*u{gQL*PId6d(>65(bZsvV9j< zHhk!XpaDItA3}$SKJsW6SE7?;X{f7*n5S5J7)v9})lXd0Dz}+!a~m1%N)q=fZjx~W zmx#bOGIx^c5#SF^t@2&l7T-iUEYcMVLjqO&RX^W6>577Gxvy1jyW8THAp1tUx``hZ zH&~?hoAK*tSBChuRc>Fm&CT5nbV!m_k**#0#zQ1L_=o$TtSb*!)hX8Q_Xb3{qt2SafTI7){lMkhJ7!U&dMCxbEc zihw3+SAk8W{V}qY;NLM79H=i7(K}GY{!~{#EiaH~_W$CU?#j?+FrL!`c^*!8m16$}Ub zp3ZO$S%SI#6iC*e!_?vhyzIiuZoKTp%gb=7u4@dvdiLDvx@q+_(-u}=wP^O-nUvyV zsk@*wa#=&g?O({p{)G(fU&xt$b*6$SgMKzQWV)sb?db}6GRx(T-B|$%RTF-y4rE}C zGsg2AfW~;9uaI#)UA>cDq+h$}iW$)u&r5K>(z6?`aH4x}g{^v1*1FJ;2Tjc2Hr;i2hU;FNSV&7-ia8z-kZ zco~9I(obPFTD@pdqvlaFtCyjAFcA%!S2J@Fv>4YnmMf`}E2$1EsR}De>y;#b#Uf%h>ng=b9_r;Pg;{N`Jm-1^yq`XS<60Kbo^$Nu3lKO&;Ovf}dx*Qo4t`=-mFiJjA+rDLT9VWnXz` zKIG&|37YCB%IET3IaZ?*gqBnC<o^$Txk@h!T%}Q8SVwC?mgABCH0pKr6eJr% zY8TdAQ&U?n=k<1VNVI&j{oJans^^kBH+HzDdj9PBGpny}@{E^Fyw1SKCYbn@u(|aW@X;qheT#0U@Zztipt$0%si1)33sgKy#UU!5 zq2f1GP(blTDh>{x@jbzmQixs7+C!tcH!aFCV0Jm1CtyaNY;4M*+Q(8=$u(rPKR|r` z4Ss5ft}O6)yzqa+Eo;`Uzs1uPP4U5gJ((@Y5lN5YXi7Xzjr<8jUupyRO-%b9w}7l1({4zIzJo^)tRL{05TRf$wh3Lm_V92?mOkjjze z)ZE_Jx6;A+<^y#20T^}A)3EUda{8_NiG1XGl6d9?GWHLJsiQed3!2;-2G6$O9+PZ4|v>FE|Gv88|ko!lMfoA{c%$k$@eRPlw!og#R{N!v&fxjpt!`NRPDxi?$ zcV`=!d~)e*Gqce!R%D^IP-Dex+w;Tw|69*QJ?I`qM-fg&csrD393xJWkkA#Aa2J*} z97UbF9MJ>?>QK-GtRik3CrDga!Y-)BEpe`^i_?S%oJt@;MjDUNrnO2$r>8-o$eXK3 z{&__5KF%elK3vOkVE_H=$oP0Z!;v*(o0+YKv&Gi+y2#(g5;^vaBOT+V_K_ctueTrV z(-oxrqq~{MXCdqXglh8MM|aJM(!4q%ajNVldSVAmQFiN(^$zj>tWywl*45pv%IRULDz(QKeg!6fTN5ISL0<4G7^f@1fIvZ5WFvKo&Ww zqA-?}?x0Z{Rp98lFX_gTIsHfr+VN?!vF79EJFeNuFZS_^jMY|LEdVoAI!?>Gw`{sd zZ5oIHU_`Y^xXk3Ywg?)ENQ#URJgtUbUJrX9tU;B-Jy4Zi!=eWiu1M76feYTQc1DoL z>#{r299TDBJDBMK)WW&xUR0RYix6lmuHM?LbQ?6J%|_y&tMCRX%ov3eNTppTf#SL> z+k{DDCo&Ufk_I?)t#Hd|XPOIdCI@UW*+1slbH>?Od6hhr#LUW2;}I|P$NK~?AbVno z>EK>@!*sw3itXl|9x&QgtbiT8ix*U+@`^4&S?QWG(`c0#Hd}4FL(qMVs*U1KPM0*Z zY-OyWa9rtDaoppAGShetG%Au6Xc!QY2&ZDRJJ7Ufi5Nyo97U8^qSw%ODiV|`%?B5a z#%Xh@vhb^2R=c*eoQr%;GE3Fs3Vf%N)O7dCY_6cTZPzl5o1}%R)u=yi zBZaFD)mi@7=*BCt@ylL2{kG(%qrMy)zJ(k**T@u+@pJdG+loocM1!lrvaCXd!gtxv zCZ1w;QeLq;i^UBVZ1mU&%C(cg_cL_6Fu> z82^UzE?|~^aq3a{WW6vY zGoKLr=}P7T8T?dW=ex(Lu({s18m2Ohl6JS@k_m08sQ)|8hCI$;59n@v({D_E|aGI)k584w!dZ`1Bd@|N5CH*QS=(XBz68 z(@>v#Z-`mM{>U`6%QQ4V4XtN?IBjGB`;cLvKD&&fRPyu4!A)fYhZ*L2HrM^azZvFb xX4z|?5?=wKiaqe>&yJKxR~}LMQh2265ZQr|d5pgBRbT`s{sJ~NQ!IG1{twE%Yidr)+>s)8TX&M{tp@ME?X;wCq(D)!tOsr|N84yu{XvXPb(mD4o$TI6+?d<%{?|kQ+ z@B4n|{_gIn4$bK{P1mkPHcs%?`y{`C5g1pa$cd8Q=;geuixXIsYdOKez9RW!y>+a& z&SPgqkrQeqe+*jRu+GKVSwUpcHm}R$6XED0>!bT3BO?4p3SI2^#?a~$^L@C6Q-kUxw= zS712*BantEw(3{y{PW1-be%%8RbO}l&EUt6lo;{qTawjZ43`!b!TiG2g;)q7&c*(C zn$APt)ys;XDqTjq9a4L}-@plWSG|LENc=f0@)HW1rPZiz_;q15*cX^vWJ{3KjldLW zE;+J5%~oz40cy7Fwbo!Z&_ruhEVcE^JT)6U_delX%;-I*vn@MkS} zX#4Rf8sPH&UIP}iY0y0+pMOFjd*|F-*nFN^fr;Ds%0%T_6|?PpRmkjxklEUh+4`wj zVDP+#0Q=y`g$$&qA9zNO6}KS4s(}iGcMU8=@wb6O6w@y*L9yy$0eT>BU%ZT+ioZOs ziC>uikmS_AC^=33NR$VDzO+OScifEI#Fo2QMr0|$<6|kGlkuUzQY$J-C{Dy6)yVoN z&h2%vZdUNI4vG;R)bfflTM1=n1j-}08mVfQV(iK*Q|)4-7?EPA@nIj^U{kgUzOo>*8li>Pm*&qSFajgt+h>})iQ-ZuTNH&?MqystE7XtX}jZ)Bn zDnHxO6l&n95xQs0srYM}p_Vz`Oaw)PTi(ZXULN}Kof1KzKzx-{LA7u*0D7XkDK8HiQi7jv=KZk@6>|~ zVlxR}>YEF_yR?Y+l1F#TBXWBV@ z7dt(Qoo9(dvz=Iwlfbl-XdRxbZj$AHj39OC_QmLG@Mrqcu7ou?jfR-KLdq+nKsqrt z)8zHLnEZ>BN25R~ado!IOk`^Cj>#B2Z^ka>J0szNH5u}E(WuwlDisclaimerGitHub issue. You can also contribute via pull request.

-

Please note that the GUI is not yet implemented and FUNKI can only be accessible -as a Python package.

Installation

@@ -70,7 +68,24 @@

Usage DataSet object. This class in turn inherits (i.e. is built on top of) the anndata.AnnData -class

+class. You can explore all implemented functionalities available +programmatically in the Documentation.

+

If you want to access FUNKI via the GUI, you need to execute the application +script with your Python interpreter, but first you need to download and install +FUNKI using the commands below:

+
git clone git@github.com:saezlab/FUNKI.git
+cd FUNKI
+pip install ./
+
+
+

Now you can launch the FUNKI by simply running the application script:

+
python src/funki/app.py
+
+
+

This should automatically open the application in your default internet browser. +If that is not the case, you can type or copy the following address (default) +in the browser bar: http://127.0.0.1:8050/

+

Note: Refreshing the page will also restart the application.

Documentation

diff --git a/html/searchindex.js b/html/searchindex.js index 1ef0ddc..407f354 100644 --- a/html/searchindex.js +++ b/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"Contents:": [[1, null]], "Disclaimer": [[1, "disclaimer"]], "Documentation": [[1, "documentation"]], "Indices and tables": [[1, "indices-and-tables"]], "Installation": [[1, "installation"]], "License": [[3, "license"]], "Usage": [[1, "usage"]], "Welcome to FUNKI": [[1, "welcome-to-funki"]], "funki.analysis": [[0, "module-funki.analysis"]], "funki.input": [[2, "module-funki.input"]], "funki.pipelines": [[4, "module-funki.pipelines"]], "funki.plots": [[5, "module-funki.plots"]], "funki.preprocessing": [[6, "module-funki.preprocessing"]]}, "docnames": ["analysis", "index", "input", "link_license", "pipelines", "plots", "preprocessing"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["analysis.rst", "index.rst", "input.rst", "link_license.rst", "pipelines.rst", "plots.rst", "preprocessing.rst"], "indexentries": {"copy() (funki.input.dataset method)": [[2, "funki.input.DataSet.copy", false]], "dataset (class in funki.input)": [[2, "funki.input.DataSet", false]], "enrich() (in module funki.analysis)": [[0, "funki.analysis.enrich", false]], "funki.analysis": [[0, "module-funki.analysis", false]], "funki.input": [[2, "module-funki.input", false]], "funki.pipelines": [[4, "module-funki.pipelines", false]], "funki.plots": [[5, "module-funki.plots", false]], "funki.preprocessing": [[6, "module-funki.preprocessing", false]], "harmonize() (in module funki.preprocessing)": [[6, "funki.preprocessing.harmonize", false]], "module": [[0, "module-funki.analysis", false], [2, "module-funki.input", false], [4, "module-funki.pipelines", false], [5, "module-funki.plots", false], [6, "module-funki.preprocessing", false]], "plot_counts_vs_n_genes() (in module funki.plots)": [[5, "funki.plots.plot_counts_vs_n_genes", false]], "plot_counts_vs_pct_mito() (in module funki.plots)": [[5, "funki.plots.plot_counts_vs_pct_mito", false]], "plot_highest_expr() (in module funki.plots)": [[5, "funki.plots.plot_highest_expr", false]], "plot_n_genes() (in module funki.plots)": [[5, "funki.plots.plot_n_genes", false]], "plot_pca() (in module funki.plots)": [[5, "funki.plots.plot_pca", false]], "plot_pct_counts_mito() (in module funki.plots)": [[5, "funki.plots.plot_pct_counts_mito", false]], "plot_total_counts() (in module funki.plots)": [[5, "funki.plots.plot_total_counts", false]], "plot_tsne() (in module funki.plots)": [[5, "funki.plots.plot_tsne", false]], "plot_umap() (in module funki.plots)": [[5, "funki.plots.plot_umap", false]], "read() (in module funki.input)": [[2, "funki.input.read", false]], "sc_clustering() (in module funki.analysis)": [[0, "funki.analysis.sc_clustering", false]], "sc_quality_control() (in module funki.pipelines)": [[4, "funki.pipelines.sc_quality_control", false]], "sc_trans_filter() (in module funki.preprocessing)": [[6, "funki.preprocessing.sc_trans_filter", false]], "sc_trans_normalize_total() (in module funki.preprocessing)": [[6, "funki.preprocessing.sc_trans_normalize_total", false]], "sc_trans_qc_metrics() (in module funki.analysis)": [[0, "funki.analysis.sc_trans_qc_metrics", false]], "serialize() (funki.input.dataset method)": [[2, "funki.input.DataSet.serialize", false]], "sum_duplicated_gene_counts() (funki.input.dataset method)": [[2, "funki.input.DataSet.sum_duplicated_gene_counts", false]]}, "objects": {"funki": [[0, 0, 0, "-", "analysis"], [2, 0, 0, "-", "input"], [4, 0, 0, "-", "pipelines"], [5, 0, 0, "-", "plots"], [6, 0, 0, "-", "preprocessing"]], "funki.analysis": [[0, 1, 1, "", "enrich"], [0, 1, 1, "", "sc_clustering"], [0, 1, 1, "", "sc_trans_qc_metrics"]], "funki.input": [[2, 2, 1, "", "DataSet"], [2, 1, 1, "", "read"]], "funki.input.DataSet": [[2, 3, 1, "", "copy"], [2, 3, 1, "", "serialize"], [2, 3, 1, "", "sum_duplicated_gene_counts"]], "funki.pipelines": [[4, 1, 1, "", "sc_quality_control"]], "funki.plots": [[5, 1, 1, "", "plot_counts_vs_n_genes"], [5, 1, 1, "", "plot_counts_vs_pct_mito"], [5, 1, 1, "", "plot_highest_expr"], [5, 1, 1, "", "plot_n_genes"], [5, 1, 1, "", "plot_pca"], [5, 1, 1, "", "plot_pct_counts_mito"], [5, 1, 1, "", "plot_total_counts"], [5, 1, 1, "", "plot_tsne"], [5, 1, 1, "", "plot_umap"]], "funki.preprocessing": [[6, 1, 1, "", "harmonize"], [6, 1, 1, "", "sc_trans_filter"], [6, 1, 1, "", "sc_trans_normalize_total"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method"}, "terms": {"": [0, 3, 6], "0": [0, 3, 5, 6], "1": [0, 3, 5, 6], "10": [3, 5], "1000000": 6, "11": 3, "12": 3, "13": 3, "14": 3, "15": 3, "16": 3, "17": 3, "1996": 3, "1e6": 6, "2": 3, "20": 3, "2007": 3, "28": 3, "29": 3, "3": 3, "30": [3, 5], "4": 3, "5": [3, 5], "6": 3, "60": 3, "6b": 3, "6d": 3, "7": 3, "8": 3, "9": 3, "A": [0, 3, 6], "AND": 3, "AS": 3, "And": 3, "BE": 3, "BEING": 3, "BUT": 3, "BY": 3, "But": 3, "By": 3, "FOR": 3, "For": 3, "IF": 3, "IN": 3, "If": [0, 1, 2, 3, 6], "In": 3, "It": 3, "NO": 3, "NOT": 3, "No": 3, "Not": 3, "OF": 3, "OR": 3, "Of": 3, "SUCH": 3, "Such": 3, "THE": 3, "THERE": 3, "TO": 3, "The": [0, 2, 3, 4, 5, 6], "These": 3, "To": [0, 1, 3], "WILL": 3, "WITH": 3, "abil": 3, "about": 3, "abov": [3, 6], "absenc": 3, "absolut": 3, "abus": 3, "accept": [2, 3], "access": [1, 3], "accompani": 3, "accord": [0, 2, 3], "achiev": 3, "acknowledg": 3, "acquir": 3, "across": 3, "action": 3, "activ": 3, "actual": 3, "ad": [1, 2, 3], "adapt": 3, "add": [3, 6], "addit": 3, "address": 3, "adopt": 3, "advers": 3, "advis": 3, "affect": 3, "affero": 3, "affirm": 3, "after": [0, 3, 6], "against": 3, "aggreg": 3, "agre": 3, "agreement": 3, "aim": 3, "alg": 0, "alg_kwarg": 0, "algorithm": 0, "all": [0, 3, 5, 6], "alleg": 3, "allow": 3, "along": 3, "alpha": 5, "alreadi": 3, "also": [1, 3, 6], "altern": 3, "although": 3, "among": 3, "an": [1, 2, 3], "analysi": 1, "ancillari": 3, "ani": [1, 2, 3], "anndata": [1, 2], "annot": 0, "anti": 3, "anyon": 3, "anyth": 3, "appli": [0, 2, 3, 5, 6], "applic": [3, 6], "approach": 0, "appropi": 2, "appropri": 3, "approxim": 3, "ar": [0, 1, 3], "area": 3, "arg": 2, "argument": [0, 2, 5, 6], "aris": 3, "around": 1, "arrang": 3, "articl": 3, "as_json": 2, "ask": 3, "assert": 3, "asset": 3, "associ": 3, "assum": [2, 3], "assumpt": 3, "assur": 3, "attach": 3, "attempt": 3, "attribut": [0, 3], "author": 3, "automat": 3, "avail": [0, 2, 3, 5, 6], "avoid": 3, "awai": 3, "b": 3, "base": [0, 3, 5, 6], "basic": 3, "batch": 6, "becaus": 3, "been": [3, 6], "behalf": 3, "being": [1, 3], "believ": 3, "below": [3, 6], "benefit": 3, "best": 3, "between": [3, 5], "beyond": 3, "bodi": 3, "bool": [2, 5, 6], "both": 3, "box": [3, 4, 5], "brief": 3, "bug": 1, "built": 1, "busi": 3, "byte": 2, "c": 3, "call": 3, "can": [0, 1, 2, 3, 5, 6], "cannot": 3, "carri": 3, "case": 3, "caus": 3, "ceas": 3, "cell": [0, 4, 5, 6], "certain": 3, "cessat": 3, "chang": 3, "character": 3, "charg": 3, "choic": 0, "choos": 3, "circumst": 3, "circumvent": 3, "civil": 3, "claim": 3, "class": [1, 2, 3], "clear": 3, "clearli": 3, "close": 3, "cluster": 0, "code": 3, "collect": [0, 3], "color": [0, 5], "column": 6, "com": 1, "combin": 3, "come": 3, "command": 3, "commerci": 3, "commit": 3, "common": 3, "commun": 3, "comparison": 4, "compil": 3, "compli": 3, "complianc": 3, "compon": 3, "comput": [0, 1, 3, 4, 5, 6], "concern": 3, "condit": 3, "connect": 3, "consequ": 3, "consequenti": 3, "consid": 3, "consist": 3, "conspicu": 3, "constantli": 3, "constitut": 3, "constru": 3, "consum": 3, "contact": 3, "contain": [3, 6], "contatain": [4, 5], "content": 3, "context": 3, "continu": 3, "contractu": 3, "contradict": 3, "contrast": 3, "contribut": 1, "contributor": 3, "control": [0, 3, 6], "convei": 3, "conveni": 3, "convey": 3, "copi": [2, 3], "copyleft": 3, "copyright": 3, "correct": [3, 6], "correspond": [3, 6], "cost": 3, "could": 3, "count": [2, 4, 5, 6], "counterclaim": 3, "countri": 3, "cours": 3, "court": 3, "coven": 3, "cover": 3, "coverag": 3, "cpm": 6, "creat": 2, "criterion": 3, "cross": 3, "cure": 3, "current": [1, 2], "custom": 3, "customarili": 3, "d": 3, "dai": 3, "damag": 3, "danger": 3, "data": [0, 1, 2, 3, 4, 5, 6], "datafram": 0, "dataset": [0, 1, 2, 4, 5, 6], "date": 3, "decemb": 3, "decid": 3, "declin": 3, "decoupl": 0, "deem": 3, "default": [0, 2, 5, 6], "defect": 3, "defens": 3, "defin": [2, 3, 6], "definit": 3, "deni": 3, "denomin": 3, "depriv": 3, "design": 3, "detail": 3, "determin": 3, "develop": [1, 3], "devic": 3, "dict": 0, "differ": [1, 2, 3, 4, 6], "dimension": [0, 5, 6], "direct": 3, "directli": 3, "disclaim": 3, "discriminatori": 3, "displai": [3, 5], "distanc": 5, "distinguish": 3, "distribut": 3, "do": 3, "document": [2, 3], "doe": 3, "domain": 3, "doubt": 3, "downstream": 3, "duplic": 2, "durabl": 3, "dwell": 3, "dynam": 3, "e": [0, 1, 2, 3, 6], "each": 3, "earlier": 3, "effect": [3, 5], "effort": 3, "either": [0, 3], "electron": 3, "embed": [5, 6], "embodi": 3, "employ": 3, "enabl": 3, "end": 3, "enforc": 3, "enrich": [0, 1], "ensur": 3, "enter": 3, "entir": 3, "entiti": 3, "equival": [3, 6], "erron": 3, "essenti": 3, "etc": [0, 2], "even": 3, "event": 3, "ever": 3, "everi": 3, "everyon": 3, "everyth": 1, "exact": 3, "exampl": 3, "except": 3, "exclud": 3, "exclus": 3, "excus": 3, "execut": [3, 6], "exercis": 3, "exist": [0, 1], "expect": 3, "explain": 3, "explicitli": 3, "express": [3, 4, 5], "expressli": 3, "extend": 3, "extens": [2, 3], "extent": 3, "f": 3, "facil": 3, "factor": 0, "fail": 3, "failur": 3, "fair": 3, "fals": [2, 5, 6], "famili": 3, "fashion": 3, "favor": 3, "featur": [0, 1, 3], "fee": 3, "feel": 1, "figur": [4, 5], "file": [2, 3], "filter": [0, 6], "final": 3, "find": [1, 2, 3], "first": 3, "fit": 3, "fix": 3, "float": [0, 5, 6], "flow": 3, "follow": [1, 3], "follwo": 4, "forbid": 3, "forc": 3, "form": 3, "format": [2, 3], "found": 3, "foundat": 3, "free": [1, 3], "freedom": 3, "from": [0, 2, 3, 4, 5], "fsf": 3, "fulfil": 3, "full": [1, 3], "function": [0, 1, 2, 3], "fundament": 3, "further": [2, 3], "futur": 3, "g": [0, 2], "gamma": 5, "gene": [0, 2, 4, 5, 6], "gener": [0, 3, 4, 5], "get": 3, "git": 1, "github": 1, "give": 3, "given": [0, 3, 6], "gnu": 3, "govern": 3, "gpl": 3, "grant": 3, "graph_obj": [4, 5], "graphic": 1, "grati": 3, "greatest": 3, "guarante": 3, "gui": [1, 3], "ha": [3, 6], "had": 3, "harmon": [1, 6], "harmoni": 6, "harmonypi": 6, "have": [1, 3, 5], "hereaft": 3, "higher": 0, "highest": 4, "highli": [5, 6], "holder": 3, "hope": 3, "host": 3, "household": 3, "how": 3, "howev": 3, "html": 3, "http": [1, 3], "hyperparmaet": 5, "hypothet": 3, "i": [0, 1, 2, 3, 5, 6], "id": 2, "idea": [1, 3], "identifi": 3, "implement": [1, 3], "impli": 3, "import": 3, "impos": 3, "inabl": 3, "inaccur": 3, "inc": 3, "incident": 3, "includ": [1, 3], "inclus": 3, "incompat": 3, "incorpor": 3, "indemnif": 3, "independ": 3, "index": 1, "indic": 3, "individu": 3, "industri": 3, "inform": [2, 3], "infring": 3, "inherit": [1, 2], "initi": [3, 5], "inplac": 0, "input": [0, 1, 4, 5, 6], "insid": 3, "instal": 3, "instanc": [0, 1, 2], "instead": 3, "int": [5, 6], "intact": 3, "integr": 1, "intend": [1, 3], "intent": 3, "interact": 3, "interchang": 3, "interest": 3, "interf": 3, "interfac": [1, 3], "interpret": 3, "intim": 3, "invalid": 3, "irrevoc": 3, "issu": 1, "item": 3, "its": 3, "itself": 3, "iz": 2, "json": 2, "june": 3, "keep": 3, "kei": 3, "kernel": 3, "keyword": [0, 2, 5, 6], "kind": 3, "know": 3, "knowingli": 3, "knowledg": 3, "kwarg": [0, 2, 5, 6], "languag": 3, "larger": 3, "later": 3, "law": 3, "lawsuit": 3, "learn": 5, "least": 3, "legal": 3, "leiden": 0, "lesser": 3, "lgpl": 3, "liabil": 3, "liabl": 3, "librari": 3, "licens": 1, "license": 3, "licensor": 3, "like": 3, "likewis": 3, "limit": 3, "line": 3, "link": [0, 3], "list": [0, 3, 5, 6], "litig": 3, "load": 2, "local": [1, 3], "log": 6, "log_transform": 6, "long": 3, "loss": 3, "louvain": 0, "machin": 3, "made": 3, "mai": 3, "mail": 3, "maintain": 3, "major": 3, "make": 3, "manner": 3, "manufactur": 3, "march": 3, "mark": 3, "mask": 3, "materi": 3, "matrix": 6, "max_gen": 6, "maximum": 6, "mean": [3, 5], "measur": 3, "medium": 3, "meet": 3, "menu": 3, "merchant": 3, "mere": 3, "merg": 3, "met": 3, "method": [0, 3, 6], "metric": [0, 4], "might": 3, "min_dist": 5, "min_gen": 6, "minimum": [5, 6], "misrepresent": 3, "mito": 0, "mito_pct": 6, "mitochondri": [4, 5, 6], "mlm": 0, "mode": 3, "model": 3, "modif": 3, "modifi": 3, "modul": 1, "more": [0, 3], "moreov": 3, "most": 3, "multipanel": 4, "multipl": 4, "must": [3, 6], "mydata": 0, "name": [0, 3], "natur": 3, "nearest": 5, "necessari": 3, "need": 3, "neg": 5, "neigh_kwarg": 0, "neighbor": 0, "neighbour": 5, "neither": 3, "net": 0, "network": [0, 3], "new": 3, "next": 3, "non": [3, 5], "noncommerci": 3, "none": [0, 2, 5, 6], "nonetyp": 0, "nor": 3, "normailz": 6, "normal": [2, 3, 6], "normalizt": 6, "note": [1, 2, 6], "noth": 3, "notic": 3, "notifi": 3, "notwithstand": 3, "number": [0, 3, 4, 5, 6], "ob": 6, "object": [0, 1, 2, 3], "oblig": 3, "observ": 5, "obsm": 6, "occasion": 3, "occur": 3, "offer": 3, "offici": 3, "omic": 1, "one": 3, "onli": [1, 3, 5, 6], "open": 1, "oper": 3, "optim": 5, "option": [0, 2, 3, 5, 6], "order": [0, 3], "org": 3, "organ": 3, "origin": 3, "other": [0, 2, 3, 5, 6], "otherwis": 3, "our": 3, "out": [3, 6], "output": 3, "outsid": 3, "over": [0, 6], "overwrit": 6, "own": 3, "packag": [1, 3], "page": 1, "panda": 0, "panel": 4, "paper": 3, "paragraph": 3, "paramet": [0, 2, 4, 5, 6], "part": 3, "parti": 3, "particular": 3, "pass": [0, 2, 3, 5, 6], "password": 3, "patent": 3, "path": 2, "pathwai": 0, "pattern": 3, "payment": 3, "pca": [5, 6], "peer": 3, "per": [4, 5, 6], "percentag": [4, 5, 6], "perform": [0, 3], "perman": 3, "permiss": 3, "permit": 3, "perpetu": 3, "perplex": 5, "person": 3, "pertin": 3, "physic": 3, "piec": 3, "pip": 1, "pipelin": 1, "place": 3, "pleas": [1, 3], "plot": [0, 1, 4], "plot_counts_vs_n_gen": [1, 5], "plot_counts_vs_pct_mito": [1, 5], "plot_highest_expr": [1, 5], "plot_n_gen": [1, 5], "plot_pca": [0, 1, 5], "plot_pct_counts_mito": [1, 5], "plot_total_count": [1, 5], "plot_tsn": [0, 1, 5], "plot_umap": [0, 1, 5], "plotli": [4, 5], "plu": 3, "point": 5, "pointer": 3, "portion": 3, "posit": 2, "possess": 3, "possibl": 3, "power": 3, "pp": [0, 5], "practic": 3, "preambl": 3, "precis": 3, "predecessor": 3, "prefer": 3, "preprocess": [1, 2], "present": 3, "preserv": 3, "prevent": 3, "previou": 3, "previous": 6, "price": 3, "primarili": 3, "prior": [2, 3], "privat": 3, "problem": 3, "procedur": 3, "procur": 3, "produc": 3, "product": 3, "program": 3, "programm": 3, "prohibit": 3, "promin": 3, "propag": 3, "properti": 3, "proprietari": 3, "protect": 3, "protocol": 3, "prove": 3, "provid": [0, 2, 3], "provis": 3, "provision": 3, "proxi": 3, "public": 3, "publicli": 3, "publish": 3, "pull": 1, "purpos": 3, "pursuant": 3, "python": 1, "qc": [0, 4], "qualifi": 3, "qualiti": [0, 3, 6], "rate": 5, "raw": [2, 6], "read": [1, 2, 3], "read_text": 2, "readabl": 3, "readi": 3, "readili": 3, "reason": 3, "recalcul": [5, 6], "receipt": 3, "receiv": 3, "recipi": 3, "recogn": [2, 3], "redistribut": 3, "reduct": [0, 5, 6], "refer": 3, "refrain": 3, "regard": 3, "regardless": 3, "regener": 3, "regularli": 1, "reinstat": 3, "relat": 5, "relationship": 3, "releas": 3, "relev": 3, "reli": 3, "relicens": 3, "remain": 3, "remov": 3, "render": 3, "repair": 3, "repres": [3, 5], "represent": 5, "request": 1, "requir": [2, 3], "resolut": 0, "resolv": 3, "respect": 3, "respons": 3, "restrict": 3, "result": [0, 3, 4, 5, 6], "retain": 3, "return": [0, 2, 3, 4, 5, 6], "review": 3, "revis": 3, "right": 3, "risk": 3, "rom": 3, "royalti": 3, "rule": 3, "run": [0, 3], "run_harmoni": 6, "saezlab": 1, "safest": 3, "sai": 3, "sake": 3, "sale": 3, "same": [2, 3], "sampl": 5, "satisfi": 3, "sc_cluster": [0, 1], "sc_quality_control": [1, 4], "sc_trans_filt": [1, 6], "sc_trans_normalize_tot": [1, 6], "sc_trans_qc_metr": [0, 1], "scale": [5, 6], "scanpi": [0, 5], "scatter": [4, 5], "school": 3, "scope": 3, "script": 3, "search": 1, "secondarili": 3, "section": 3, "see": [0, 3], "select": 0, "sell": 3, "semiconductor": 3, "separ": 3, "serial": 2, "serv": 3, "server": 3, "servic": 3, "set": [0, 2, 4, 5, 6], "sever": [0, 4], "shall": 3, "share": 3, "short": 3, "should": [0, 2, 3], "show": [3, 5], "show_method": 0, "sign": 3, "signific": 3, "similar": 3, "simultan": 3, "singl": [0, 3, 4, 6], "smaller": 0, "sne": 5, "so": [3, 6], "softwar": 3, "sold": 3, "sole": 3, "some": 3, "sourc": 3, "spare": 3, "speak": 3, "special": 3, "specif": 3, "specifi": [0, 3, 6], "spirit": 3, "splice": 2, "spread": 5, "stand": 3, "standalon": 1, "standard": 3, "start": 3, "state": 3, "statement": 3, "statist": 0, "statu": 3, "step": 3, "storag": 3, "store": 0, "str": [0, 2, 5, 6], "string": 2, "subdivid": 3, "subject": 3, "sublicens": 3, "subprogram": 3, "subroutin": 3, "subsect": 3, "substanti": 3, "sue": 3, "suffic": 3, "suggest": 1, "sum": [2, 6], "sum_duplicated_gene_count": 2, "supplement": 3, "support": 3, "sure": 3, "surrend": 3, "surviv": 3, "sustain": 3, "symbol": 2, "system": 3, "systemat": 3, "t": 5, "take": [0, 2, 3], "tangibl": 3, "target": 6, "target_sum": 6, "technolog": 3, "tell": 3, "term": 3, "termin": 3, "than": 3, "thei": 3, "them": [3, 4], "therefor": 3, "thi": [0, 1, 2, 3, 5, 6], "thing": 3, "third": 3, "those": 3, "though": 3, "threaten": 3, "three": 3, "threshold": [0, 6], "through": 3, "thu": 3, "time": 3, "tl": [0, 5], "too": 3, "tool": [1, 3], "top": [1, 5], "total": [4, 5, 6], "toward": 2, "trade": 3, "trademark": 3, "transact": 3, "transcript": 0, "transcriptom": [0, 6], "transfer": 3, "transform": 6, "transmiss": 3, "treat": 3, "treati": 3, "true": [5, 6], "tsne": 5, "turn": 1, "two": 3, "type": [0, 2, 3, 4, 5, 6], "typic": 3, "ulm": 0, "umap": 5, "unaccept": 3, "under": 3, "uniprot": 2, "unless": 3, "unlimit": 3, "unmodifi": 3, "unnecessari": 3, "unpack": 3, "until": 3, "up": 6, "updat": 3, "us": [0, 1, 2, 3, 5, 6], "use_highly_vari": [5, 6], "user": [1, 3], "v": 4, "valid": 3, "var_nam": [0, 2], "variabl": [0, 5, 6], "variant": 2, "vars_us": 6, "verbatim": 3, "version": 3, "versu": 5, "via": 1, "view": 3, "violat": 3, "violin": [4, 5], "visibl": 3, "visual": 4, "void": 3, "volum": 3, "w": 3, "wa": 3, "wai": 3, "waiv": 3, "waiver": 3, "want": 3, "warranti": 3, "we": 3, "webpag": 1, "weight": 5, "welcom": 3, "well": [3, 6], "were": 3, "what": 3, "whatev": 3, "when": 3, "where": 3, "whether": [2, 3, 5, 6], "which": [0, 3, 4, 5, 6], "who": 3, "whole": 3, "whom": 3, "whose": 3, "why": 3, "wide": 3, "window": 3, "wipo": 3, "wish": 3, "within": [1, 3], "without": 3, "work": [1, 3], "workflow": 1, "worldwid": 3, "would": 3, "write": 3, "written": 3, "wsum": 0, "www": 3, "x": [2, 6], "x_pca": 6, "year": 3, "yet": 1, "you": [0, 1, 2, 3], "your": [0, 1, 3], "yourself": 3, "zero": 5}, "titles": ["funki.analysis", "Welcome to FUNKI", "funki.input", "License", "funki.pipelines", "funki.plots", "funki.preprocessing"], "titleterms": {"analysi": 0, "content": 1, "disclaim": 1, "document": 1, "funki": [0, 1, 2, 4, 5, 6], "indic": 1, "input": 2, "instal": 1, "licens": 3, "pipelin": 4, "plot": 5, "preprocess": 6, "tabl": 1, "usag": 1, "welcom": 1}}) \ No newline at end of file +Search.setIndex({"alltitles": {"Contents:": [[1, null]], "Disclaimer": [[1, "disclaimer"]], "Documentation": [[1, "documentation"]], "Indices and tables": [[1, "indices-and-tables"]], "Installation": [[1, "installation"]], "License": [[3, "license"]], "Usage": [[1, "usage"]], "Welcome to FUNKI": [[1, "welcome-to-funki"]], "funki.analysis": [[0, "module-funki.analysis"]], "funki.input": [[2, "module-funki.input"]], "funki.pipelines": [[4, "module-funki.pipelines"]], "funki.plots": [[5, "module-funki.plots"]], "funki.preprocessing": [[6, "module-funki.preprocessing"]]}, "docnames": ["analysis", "index", "input", "link_license", "pipelines", "plots", "preprocessing"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["analysis.rst", "index.rst", "input.rst", "link_license.rst", "pipelines.rst", "plots.rst", "preprocessing.rst"], "indexentries": {"copy() (funki.input.dataset method)": [[2, "funki.input.DataSet.copy", false]], "dataset (class in funki.input)": [[2, "funki.input.DataSet", false]], "enrich() (in module funki.analysis)": [[0, "funki.analysis.enrich", false]], "funki.analysis": [[0, "module-funki.analysis", false]], "funki.input": [[2, "module-funki.input", false]], "funki.pipelines": [[4, "module-funki.pipelines", false]], "funki.plots": [[5, "module-funki.plots", false]], "funki.preprocessing": [[6, "module-funki.preprocessing", false]], "harmonize() (in module funki.preprocessing)": [[6, "funki.preprocessing.harmonize", false]], "module": [[0, "module-funki.analysis", false], [2, "module-funki.input", false], [4, "module-funki.pipelines", false], [5, "module-funki.plots", false], [6, "module-funki.preprocessing", false]], "plot_counts_vs_n_genes() (in module funki.plots)": [[5, "funki.plots.plot_counts_vs_n_genes", false]], "plot_counts_vs_pct_mito() (in module funki.plots)": [[5, "funki.plots.plot_counts_vs_pct_mito", false]], "plot_highest_expr() (in module funki.plots)": [[5, "funki.plots.plot_highest_expr", false]], "plot_n_genes() (in module funki.plots)": [[5, "funki.plots.plot_n_genes", false]], "plot_pca() (in module funki.plots)": [[5, "funki.plots.plot_pca", false]], "plot_pct_counts_mito() (in module funki.plots)": [[5, "funki.plots.plot_pct_counts_mito", false]], "plot_total_counts() (in module funki.plots)": [[5, "funki.plots.plot_total_counts", false]], "plot_tsne() (in module funki.plots)": [[5, "funki.plots.plot_tsne", false]], "plot_umap() (in module funki.plots)": [[5, "funki.plots.plot_umap", false]], "read() (in module funki.input)": [[2, "funki.input.read", false]], "sc_clustering() (in module funki.analysis)": [[0, "funki.analysis.sc_clustering", false]], "sc_quality_control() (in module funki.pipelines)": [[4, "funki.pipelines.sc_quality_control", false]], "sc_trans_filter() (in module funki.preprocessing)": [[6, "funki.preprocessing.sc_trans_filter", false]], "sc_trans_normalize_total() (in module funki.preprocessing)": [[6, "funki.preprocessing.sc_trans_normalize_total", false]], "sc_trans_qc_metrics() (in module funki.analysis)": [[0, "funki.analysis.sc_trans_qc_metrics", false]], "serialize() (funki.input.dataset method)": [[2, "funki.input.DataSet.serialize", false]], "sum_duplicated_gene_counts() (funki.input.dataset method)": [[2, "funki.input.DataSet.sum_duplicated_gene_counts", false]]}, "objects": {"funki": [[0, 0, 0, "-", "analysis"], [2, 0, 0, "-", "input"], [4, 0, 0, "-", "pipelines"], [5, 0, 0, "-", "plots"], [6, 0, 0, "-", "preprocessing"]], "funki.analysis": [[0, 1, 1, "", "enrich"], [0, 1, 1, "", "sc_clustering"], [0, 1, 1, "", "sc_trans_qc_metrics"]], "funki.input": [[2, 2, 1, "", "DataSet"], [2, 1, 1, "", "read"]], "funki.input.DataSet": [[2, 3, 1, "", "copy"], [2, 3, 1, "", "serialize"], [2, 3, 1, "", "sum_duplicated_gene_counts"]], "funki.pipelines": [[4, 1, 1, "", "sc_quality_control"]], "funki.plots": [[5, 1, 1, "", "plot_counts_vs_n_genes"], [5, 1, 1, "", "plot_counts_vs_pct_mito"], [5, 1, 1, "", "plot_highest_expr"], [5, 1, 1, "", "plot_n_genes"], [5, 1, 1, "", "plot_pca"], [5, 1, 1, "", "plot_pct_counts_mito"], [5, 1, 1, "", "plot_total_counts"], [5, 1, 1, "", "plot_tsne"], [5, 1, 1, "", "plot_umap"]], "funki.preprocessing": [[6, 1, 1, "", "harmonize"], [6, 1, 1, "", "sc_trans_filter"], [6, 1, 1, "", "sc_trans_normalize_total"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method"}, "terms": {"": [0, 3, 6], "0": [0, 1, 3, 5, 6], "1": [0, 1, 3, 5, 6], "10": [3, 5], "1000000": 6, "11": 3, "12": 3, "127": 1, "13": 3, "14": 3, "15": 3, "16": 3, "17": 3, "1996": 3, "1e6": 6, "2": 3, "20": 3, "2007": 3, "28": 3, "29": 3, "3": 3, "30": [3, 5], "4": 3, "5": [3, 5], "6": 3, "60": 3, "6b": 3, "6d": 3, "7": 3, "8": 3, "8050": 1, "9": 3, "A": [0, 3, 6], "AND": 3, "AS": 3, "And": 3, "BE": 3, "BEING": 3, "BUT": 3, "BY": 3, "But": 3, "By": 3, "FOR": 3, "For": 3, "IF": 3, "IN": 3, "If": [0, 1, 2, 3, 6], "In": 3, "It": 3, "NO": 3, "NOT": 3, "No": 3, "Not": 3, "OF": 3, "OR": 3, "Of": 3, "SUCH": 3, "Such": 3, "THE": 3, "THERE": 3, "TO": 3, "The": [0, 2, 3, 4, 5, 6], "These": 3, "To": [0, 1, 3], "WILL": 3, "WITH": 3, "abil": 3, "about": 3, "abov": [3, 6], "absenc": 3, "absolut": 3, "abus": 3, "accept": [2, 3], "access": [1, 3], "accompani": 3, "accord": [0, 2, 3], "achiev": 3, "acknowledg": 3, "acquir": 3, "across": 3, "action": 3, "activ": 3, "actual": 3, "ad": [1, 2, 3], "adapt": 3, "add": [3, 6], "addit": 3, "address": [1, 3], "adopt": 3, "advers": 3, "advis": 3, "affect": 3, "affero": 3, "affirm": 3, "after": [0, 3, 6], "against": 3, "aggreg": 3, "agre": 3, "agreement": 3, "aim": 3, "alg": 0, "alg_kwarg": 0, "algorithm": 0, "all": [0, 1, 3, 5, 6], "alleg": 3, "allow": 3, "along": 3, "alpha": 5, "alreadi": 3, "also": [1, 3, 6], "altern": 3, "although": 3, "among": 3, "an": [1, 2, 3], "analysi": 1, "ancillari": 3, "ani": [1, 2, 3], "anndata": [1, 2], "annot": 0, "anti": 3, "anyon": 3, "anyth": 3, "app": 1, "appli": [0, 2, 3, 5, 6], "applic": [1, 3, 6], "approach": 0, "appropi": 2, "appropri": 3, "approxim": 3, "ar": [0, 1, 3], "area": 3, "arg": 2, "argument": [0, 2, 5, 6], "aris": 3, "around": 1, "arrang": 3, "articl": 3, "as_json": 2, "ask": 3, "assert": 3, "asset": 3, "associ": 3, "assum": [2, 3], "assumpt": 3, "assur": 3, "attach": 3, "attempt": 3, "attribut": [0, 3], "author": 3, "automat": [1, 3], "avail": [0, 1, 2, 3, 5, 6], "avoid": 3, "awai": 3, "b": 3, "bar": 1, "base": [0, 3, 5, 6], "basic": 3, "batch": 6, "becaus": 3, "been": [3, 6], "behalf": 3, "being": [1, 3], "believ": 3, "below": [1, 3, 6], "benefit": 3, "best": 3, "between": [3, 5], "beyond": 3, "bodi": 3, "bool": [2, 5, 6], "both": 3, "box": [3, 4, 5], "brief": 3, "browser": 1, "bug": 1, "built": 1, "busi": 3, "byte": 2, "c": 3, "call": 3, "can": [0, 1, 2, 3, 5, 6], "cannot": 3, "carri": 3, "case": [1, 3], "caus": 3, "cd": 1, "ceas": 3, "cell": [0, 4, 5, 6], "certain": 3, "cessat": 3, "chang": 3, "character": 3, "charg": 3, "choic": 0, "choos": 3, "circumst": 3, "circumvent": 3, "civil": 3, "claim": 3, "class": [1, 2, 3], "clear": 3, "clearli": 3, "clone": 1, "close": 3, "cluster": 0, "code": 3, "collect": [0, 3], "color": [0, 5], "column": 6, "com": 1, "combin": 3, "come": 3, "command": [1, 3], "commerci": 3, "commit": 3, "common": 3, "commun": 3, "comparison": 4, "compil": 3, "compli": 3, "complianc": 3, "compon": 3, "comput": [0, 1, 3, 4, 5, 6], "concern": 3, "condit": 3, "connect": 3, "consequ": 3, "consequenti": 3, "consid": 3, "consist": 3, "conspicu": 3, "constantli": 3, "constitut": 3, "constru": 3, "consum": 3, "contact": 3, "contain": [3, 6], "contatain": [4, 5], "content": 3, "context": 3, "continu": 3, "contractu": 3, "contradict": 3, "contrast": 3, "contribut": 1, "contributor": 3, "control": [0, 3, 6], "convei": 3, "conveni": 3, "convey": 3, "copi": [1, 2, 3], "copyleft": 3, "copyright": 3, "correct": [3, 6], "correspond": [3, 6], "cost": 3, "could": 3, "count": [2, 4, 5, 6], "counterclaim": 3, "countri": 3, "cours": 3, "court": 3, "coven": 3, "cover": 3, "coverag": 3, "cpm": 6, "creat": 2, "criterion": 3, "cross": 3, "cure": 3, "current": [1, 2], "custom": 3, "customarili": 3, "d": 3, "dai": 3, "damag": 3, "danger": 3, "data": [0, 1, 2, 3, 4, 5, 6], "datafram": 0, "dataset": [0, 1, 2, 4, 5, 6], "date": 3, "decemb": 3, "decid": 3, "declin": 3, "decoupl": 0, "deem": 3, "default": [0, 1, 2, 5, 6], "defect": 3, "defens": 3, "defin": [2, 3, 6], "definit": 3, "deni": 3, "denomin": 3, "depriv": 3, "design": 3, "detail": 3, "determin": 3, "develop": [1, 3], "devic": 3, "dict": 0, "differ": [1, 2, 3, 4, 6], "dimension": [0, 5, 6], "direct": 3, "directli": 3, "disclaim": 3, "discriminatori": 3, "displai": [3, 5], "distanc": 5, "distinguish": 3, "distribut": 3, "do": 3, "document": [2, 3], "doe": 3, "domain": 3, "doubt": 3, "download": 1, "downstream": 3, "duplic": 2, "durabl": 3, "dwell": 3, "dynam": 3, "e": [0, 1, 2, 3, 6], "each": 3, "earlier": 3, "effect": [3, 5], "effort": 3, "either": [0, 3], "electron": 3, "embed": [5, 6], "embodi": 3, "employ": 3, "enabl": 3, "end": 3, "enforc": 3, "enrich": [0, 1], "ensur": 3, "enter": 3, "entir": 3, "entiti": 3, "equival": [3, 6], "erron": 3, "essenti": 3, "etc": [0, 2], "even": 3, "event": 3, "ever": 3, "everi": 3, "everyon": 3, "everyth": 1, "exact": 3, "exampl": 3, "except": 3, "exclud": 3, "exclus": 3, "excus": 3, "execut": [1, 3, 6], "exercis": 3, "exist": [0, 1], "expect": 3, "explain": 3, "explicitli": 3, "explor": 1, "express": [3, 4, 5], "expressli": 3, "extend": 3, "extens": [2, 3], "extent": 3, "f": 3, "facil": 3, "factor": 0, "fail": 3, "failur": 3, "fair": 3, "fals": [2, 5, 6], "famili": 3, "fashion": 3, "favor": 3, "featur": [0, 1, 3], "fee": 3, "feel": 1, "figur": [4, 5], "file": [2, 3], "filter": [0, 6], "final": 3, "find": [1, 2, 3], "first": [1, 3], "fit": 3, "fix": 3, "float": [0, 5, 6], "flow": 3, "follow": [1, 3], "follwo": 4, "forbid": 3, "forc": 3, "form": 3, "format": [2, 3], "found": 3, "foundat": 3, "free": [1, 3], "freedom": 3, "from": [0, 2, 3, 4, 5], "fsf": 3, "fulfil": 3, "full": [1, 3], "function": [0, 1, 2, 3], "fundament": 3, "further": [2, 3], "futur": 3, "g": [0, 2], "gamma": 5, "gene": [0, 2, 4, 5, 6], "gener": [0, 3, 4, 5], "get": 3, "git": 1, "github": 1, "give": 3, "given": [0, 3, 6], "gnu": 3, "govern": 3, "gpl": 3, "grant": 3, "graph_obj": [4, 5], "graphic": 1, "grati": 3, "greatest": 3, "guarante": 3, "gui": [1, 3], "ha": [3, 6], "had": 3, "harmon": [1, 6], "harmoni": 6, "harmonypi": 6, "have": [1, 3, 5], "hereaft": 3, "higher": 0, "highest": 4, "highli": [5, 6], "holder": 3, "hope": 3, "host": 3, "household": 3, "how": 3, "howev": 3, "html": 3, "http": [1, 3], "hyperparmaet": 5, "hypothet": 3, "i": [0, 1, 2, 3, 5, 6], "id": 2, "idea": [1, 3], "identifi": 3, "implement": [1, 3], "impli": 3, "import": 3, "impos": 3, "inabl": 3, "inaccur": 3, "inc": 3, "incident": 3, "includ": [1, 3], "inclus": 3, "incompat": 3, "incorpor": 3, "indemnif": 3, "independ": 3, "index": 1, "indic": 3, "individu": 3, "industri": 3, "inform": [2, 3], "infring": 3, "inherit": [1, 2], "initi": [3, 5], "inplac": 0, "input": [0, 1, 4, 5, 6], "insid": 3, "instal": 3, "instanc": [0, 1, 2], "instead": 3, "int": [5, 6], "intact": 3, "integr": 1, "intend": [1, 3], "intent": 3, "interact": 3, "interchang": 3, "interest": 3, "interf": 3, "interfac": [1, 3], "internet": 1, "interpret": [1, 3], "intim": 3, "invalid": 3, "irrevoc": 3, "issu": 1, "item": 3, "its": 3, "itself": 3, "iz": 2, "json": 2, "june": 3, "keep": 3, "kei": 3, "kernel": 3, "keyword": [0, 2, 5, 6], "kind": 3, "know": 3, "knowingli": 3, "knowledg": 3, "kwarg": [0, 2, 5, 6], "languag": 3, "larger": 3, "later": 3, "launch": 1, "law": 3, "lawsuit": 3, "learn": 5, "least": 3, "legal": 3, "leiden": 0, "lesser": 3, "lgpl": 3, "liabil": 3, "liabl": 3, "librari": 3, "licens": 1, "license": 3, "licensor": 3, "like": 3, "likewis": 3, "limit": 3, "line": 3, "link": [0, 3], "list": [0, 3, 5, 6], "litig": 3, "load": 2, "local": [1, 3], "log": 6, "log_transform": 6, "long": 3, "loss": 3, "louvain": 0, "machin": 3, "made": 3, "mai": 3, "mail": 3, "maintain": 3, "major": 3, "make": 3, "manner": 3, "manufactur": 3, "march": 3, "mark": 3, "mask": 3, "materi": 3, "matrix": 6, "max_gen": 6, "maximum": 6, "mean": [3, 5], "measur": 3, "medium": 3, "meet": 3, "menu": 3, "merchant": 3, "mere": 3, "merg": 3, "met": 3, "method": [0, 3, 6], "metric": [0, 4], "might": 3, "min_dist": 5, "min_gen": 6, "minimum": [5, 6], "misrepresent": 3, "mito": 0, "mito_pct": 6, "mitochondri": [4, 5, 6], "mlm": 0, "mode": 3, "model": 3, "modif": 3, "modifi": 3, "modul": 1, "more": [0, 3], "moreov": 3, "most": 3, "multipanel": 4, "multipl": 4, "must": [3, 6], "mydata": 0, "name": [0, 3], "natur": 3, "nearest": 5, "necessari": 3, "need": [1, 3], "neg": 5, "neigh_kwarg": 0, "neighbor": 0, "neighbour": 5, "neither": 3, "net": 0, "network": [0, 3], "new": 3, "next": 3, "non": [3, 5], "noncommerci": 3, "none": [0, 2, 5, 6], "nonetyp": 0, "nor": 3, "normailz": 6, "normal": [2, 3, 6], "normalizt": 6, "note": [1, 2, 6], "noth": 3, "notic": 3, "notifi": 3, "notwithstand": 3, "now": 1, "number": [0, 3, 4, 5, 6], "ob": 6, "object": [0, 1, 2, 3], "oblig": 3, "observ": 5, "obsm": 6, "occasion": 3, "occur": 3, "offer": 3, "offici": 3, "omic": 1, "one": 3, "onli": [3, 5, 6], "open": 1, "oper": 3, "optim": 5, "option": [0, 2, 3, 5, 6], "order": [0, 3], "org": 3, "organ": 3, "origin": 3, "other": [0, 2, 3, 5, 6], "otherwis": 3, "our": 3, "out": [3, 6], "output": 3, "outsid": 3, "over": [0, 6], "overwrit": 6, "own": 3, "packag": [1, 3], "page": 1, "panda": 0, "panel": 4, "paper": 3, "paragraph": 3, "paramet": [0, 2, 4, 5, 6], "part": 3, "parti": 3, "particular": 3, "pass": [0, 2, 3, 5, 6], "password": 3, "patent": 3, "path": 2, "pathwai": 0, "pattern": 3, "payment": 3, "pca": [5, 6], "peer": 3, "per": [4, 5, 6], "percentag": [4, 5, 6], "perform": [0, 3], "perman": 3, "permiss": 3, "permit": 3, "perpetu": 3, "perplex": 5, "person": 3, "pertin": 3, "physic": 3, "piec": 3, "pip": 1, "pipelin": 1, "place": 3, "pleas": [1, 3], "plot": [0, 1, 4], "plot_counts_vs_n_gen": [1, 5], "plot_counts_vs_pct_mito": [1, 5], "plot_highest_expr": [1, 5], "plot_n_gen": [1, 5], "plot_pca": [0, 1, 5], "plot_pct_counts_mito": [1, 5], "plot_total_count": [1, 5], "plot_tsn": [0, 1, 5], "plot_umap": [0, 1, 5], "plotli": [4, 5], "plu": 3, "point": 5, "pointer": 3, "portion": 3, "posit": 2, "possess": 3, "possibl": 3, "power": 3, "pp": [0, 5], "practic": 3, "preambl": 3, "precis": 3, "predecessor": 3, "prefer": 3, "preprocess": [1, 2], "present": 3, "preserv": 3, "prevent": 3, "previou": 3, "previous": 6, "price": 3, "primarili": 3, "prior": [2, 3], "privat": 3, "problem": 3, "procedur": 3, "procur": 3, "produc": 3, "product": 3, "program": 3, "programm": 3, "programmat": 1, "prohibit": 3, "promin": 3, "propag": 3, "properti": 3, "proprietari": 3, "protect": 3, "protocol": 3, "prove": 3, "provid": [0, 2, 3], "provis": 3, "provision": 3, "proxi": 3, "public": 3, "publicli": 3, "publish": 3, "pull": 1, "purpos": 3, "pursuant": 3, "py": 1, "python": 1, "qc": [0, 4], "qualifi": 3, "qualiti": [0, 3, 6], "rate": 5, "raw": [2, 6], "read": [1, 2, 3], "read_text": 2, "readabl": 3, "readi": 3, "readili": 3, "reason": 3, "recalcul": [5, 6], "receipt": 3, "receiv": 3, "recipi": 3, "recogn": [2, 3], "redistribut": 3, "reduct": [0, 5, 6], "refer": 3, "refrain": 3, "refresh": 1, "regard": 3, "regardless": 3, "regener": 3, "regularli": 1, "reinstat": 3, "relat": 5, "relationship": 3, "releas": 3, "relev": 3, "reli": 3, "relicens": 3, "remain": 3, "remov": 3, "render": 3, "repair": 3, "repres": [3, 5], "represent": 5, "request": 1, "requir": [2, 3], "resolut": 0, "resolv": 3, "respect": 3, "respons": 3, "restart": 1, "restrict": 3, "result": [0, 3, 4, 5, 6], "retain": 3, "return": [0, 2, 3, 4, 5, 6], "review": 3, "revis": 3, "right": 3, "risk": 3, "rom": 3, "royalti": 3, "rule": 3, "run": [0, 1, 3], "run_harmoni": 6, "saezlab": 1, "safest": 3, "sai": 3, "sake": 3, "sale": 3, "same": [2, 3], "sampl": 5, "satisfi": 3, "sc_cluster": [0, 1], "sc_quality_control": [1, 4], "sc_trans_filt": [1, 6], "sc_trans_normalize_tot": [1, 6], "sc_trans_qc_metr": [0, 1], "scale": [5, 6], "scanpi": [0, 5], "scatter": [4, 5], "school": 3, "scope": 3, "script": [1, 3], "search": 1, "secondarili": 3, "section": 3, "see": [0, 3], "select": 0, "sell": 3, "semiconductor": 3, "separ": 3, "serial": 2, "serv": 3, "server": 3, "servic": 3, "set": [0, 2, 4, 5, 6], "sever": [0, 4], "shall": 3, "share": 3, "short": 3, "should": [0, 1, 2, 3], "show": [3, 5], "show_method": 0, "sign": 3, "signific": 3, "similar": 3, "simpli": 1, "simultan": 3, "singl": [0, 3, 4, 6], "smaller": 0, "sne": 5, "so": [3, 6], "softwar": 3, "sold": 3, "sole": 3, "some": 3, "sourc": 3, "spare": 3, "speak": 3, "special": 3, "specif": 3, "specifi": [0, 3, 6], "spirit": 3, "splice": 2, "spread": 5, "src": 1, "stand": 3, "standalon": 1, "standard": 3, "start": 3, "state": 3, "statement": 3, "statist": 0, "statu": 3, "step": 3, "storag": 3, "store": 0, "str": [0, 2, 5, 6], "string": 2, "subdivid": 3, "subject": 3, "sublicens": 3, "subprogram": 3, "subroutin": 3, "subsect": 3, "substanti": 3, "sue": 3, "suffic": 3, "suggest": 1, "sum": [2, 6], "sum_duplicated_gene_count": 2, "supplement": 3, "support": 3, "sure": 3, "surrend": 3, "surviv": 3, "sustain": 3, "symbol": 2, "system": 3, "systemat": 3, "t": 5, "take": [0, 2, 3], "tangibl": 3, "target": 6, "target_sum": 6, "technolog": 3, "tell": 3, "term": 3, "termin": 3, "than": 3, "thei": 3, "them": [3, 4], "therefor": 3, "thi": [0, 1, 2, 3, 5, 6], "thing": 3, "third": 3, "those": 3, "though": 3, "threaten": 3, "three": 3, "threshold": [0, 6], "through": 3, "thu": 3, "time": 3, "tl": [0, 5], "too": 3, "tool": [1, 3], "top": [1, 5], "total": [4, 5, 6], "toward": 2, "trade": 3, "trademark": 3, "transact": 3, "transcript": 0, "transcriptom": [0, 6], "transfer": 3, "transform": 6, "transmiss": 3, "treat": 3, "treati": 3, "true": [5, 6], "tsne": 5, "turn": 1, "two": 3, "type": [0, 1, 2, 3, 4, 5, 6], "typic": 3, "ulm": 0, "umap": 5, "unaccept": 3, "under": 3, "uniprot": 2, "unless": 3, "unlimit": 3, "unmodifi": 3, "unnecessari": 3, "unpack": 3, "until": 3, "up": 6, "updat": 3, "us": [0, 1, 2, 3, 5, 6], "use_highly_vari": [5, 6], "user": [1, 3], "v": 4, "valid": 3, "var_nam": [0, 2], "variabl": [0, 5, 6], "variant": 2, "vars_us": 6, "verbatim": 3, "version": 3, "versu": 5, "via": 1, "view": 3, "violat": 3, "violin": [4, 5], "visibl": 3, "visual": 4, "void": 3, "volum": 3, "w": 3, "wa": 3, "wai": 3, "waiv": 3, "waiver": 3, "want": [1, 3], "warranti": 3, "we": 3, "webpag": 1, "weight": 5, "welcom": 3, "well": [3, 6], "were": 3, "what": 3, "whatev": 3, "when": 3, "where": 3, "whether": [2, 3, 5, 6], "which": [0, 3, 4, 5, 6], "who": 3, "whole": 3, "whom": 3, "whose": 3, "why": 3, "wide": 3, "window": 3, "wipo": 3, "wish": 3, "within": [1, 3], "without": 3, "work": [1, 3], "workflow": 1, "worldwid": 3, "would": 3, "write": 3, "written": 3, "wsum": 0, "www": 3, "x": [2, 6], "x_pca": 6, "year": 3, "you": [0, 1, 2, 3], "your": [0, 1, 3], "yourself": 3, "zero": 5}, "titles": ["funki.analysis", "Welcome to FUNKI", "funki.input", "License", "funki.pipelines", "funki.plots", "funki.preprocessing"], "titleterms": {"analysi": 0, "content": 1, "disclaim": 1, "document": 1, "funki": [0, 1, 2, 4, 5, 6], "indic": 1, "input": 2, "instal": 1, "licens": 3, "pipelin": 4, "plot": 5, "preprocess": 6, "tabl": 1, "usag": 1, "welcom": 1}}) \ No newline at end of file