-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path05_plot_weights.py
234 lines (201 loc) · 9.89 KB
/
05_plot_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import numpy as np
import matplotlib.pyplot as plt
from config import conf
import os, sys
import pandas as pns
from config import names as gs
import getopt
import matplotlib.gridspec as gridspec
from sklearn.metrics import f1_score
import seaborn as sns
sns.set(style='whitegrid', color_codes=True)
sns.set_context('poster')
dark_color = sns.xkcd_rgb['charcoal grey']
light_color = sns.xkcd_rgb['cloudy blue']
def plot_weights():
# for each personality trait, compute the list of median feature importances across all cross validation folds and iterations
medianlist = []
for t in xrange(0, conf.n_traits):
medianlist.append(
list(imp_df.loc[imp_df['T'] == t].groupby(by='feat_num')['feature importance'].median()))
# find the 5th to highest feature importance for each trait and write their importances into a .tex table - see Table 2, SI
n = 15
most_important_features = []
most_important_features_lists = []
for ml in medianlist:
locallist = []
for i in xrange(1,(n+1)):
fn = gs.full_long_label_list[int(np.argsort(np.array(ml))[-i])]
locallist.append(fn)
if fn not in most_important_features:
most_important_features.append(fn)
most_important_features_lists.append(locallist)
most_important_features.sort()
# write the full list of feature importances into a .tex table - shown in Table 2, SI
filename = conf.figure_folder + '/table2.tex'
with open(filename, 'w') as f:
f.write('feature&Neur.&Extr.&Open.&Agree.&Consc.&PCS&CEI')
f.write('\\\\\n\hline\n')
for fi in xrange(0, len(most_important_features)):
f.write(most_important_features[fi])
for t in xrange(0, conf.n_traits):
m = imp_df[(imp_df['T'] == t)&(imp_df.feature == most_important_features[fi])]['feature importance'].median()
if most_important_features[fi] in most_important_features_lists[t]:
f.write('& \\textbf{' + '%.3f}' % m)
else:
f.write('&' + '%.3f' % m)
f.write('\\\\\n')
print filename, 'written.'
# create Figure 2
# first collect the set of individual top TOP_N features per trait:
TOP_N = 10
featlabels = []
for trait in xrange(0, conf.n_traits):
basedata = imp_df.loc[imp_df['T'] == trait]
gp = basedata.groupby(by='feature')['feature importance'].median()
order = gp.sort_values(ascending=False)
featlabels.extend(order[:TOP_N].keys())
super_feats = np.unique(np.array(featlabels))
# collect the sum of feature importances for these labels, to sort the features by their median
super_feats_importance_sum = np.zeros((len(super_feats)))
for i in xrange(0, len(super_feats)):
super_feats_importance_sum[i] = imp_df[imp_df.feature==super_feats[i]].groupby(by=['T'])['feature importance'].median().sum()
super_feats_sort_indices = np.argsort(super_feats_importance_sum)[::-1]
# add some interesting features from related work to the list of features whose importance will be shown
must_have_feats = [
'inter quartile range x', 'range x', 'maximum x', 'std x', '1st quartile x', 'range pupil diameter', 'median y',
'mean difference of subsequent x', 'mean fixation duration', '3rd quartile y',
'fixation rate', 'mean saccade amplitude', 'dwelling time'
]
# but only add them if they are not in the list yet
additional_feats = np.array([a for a in must_have_feats if a not in super_feats], dtype=object)
# collect the sum of feature importances for these labels as well, so they can be sorted by their median importance in the plot
additional_feats_importance_sum = np.zeros((len(additional_feats)))
for trait in xrange(0, conf.n_traits):
basedata = imp_df.loc[imp_df['T'] == trait]
for i in xrange(0, len(additional_feats)):
logi = basedata.feature == additional_feats[i]
additional_feats_importance_sum[i] += float(basedata[logi]['feature importance'].median())
additional_feats_sort_indices = np.argsort(additional_feats_importance_sum)[::-1]
# create the figure
plt.figure(figsize=(20, 12))
grs = gridspec.GridSpec(len(super_feats) + len(additional_feats) + 1, conf.n_traits)
for trait in xrange(0, conf.n_traits):
# upper part of the figure, i.e. important features
ax = plt.subplot(grs[:len(super_feats),trait])
basedata = imp_df.loc[imp_df['T'] == trait]
feat_importances = []
for i in xrange(0, len(super_feats)):
logi = basedata.feature == super_feats[super_feats_sort_indices][i]
feat_importances.append(list(basedata[logi]['feature importance']))
bp = plt.boxplot(x=feat_importances, #notch=True, labels=super_feats[super_feats_sort_indices],
patch_artist=True, sym='', vert=False, whis='range', positions=np.arange(0,len(feat_importances)))
# asthetics
for i in xrange(0, len(super_feats)):
bp['boxes'][i].set(color=dark_color)
bp['boxes'][i].set(facecolor=light_color)
bp['whiskers'][2 * i].set(color=dark_color, linestyle='-')
bp['whiskers'][2 * i + 1].set(color=dark_color, linestyle='-')
bp['caps'][2 * i].set(color=dark_color)
bp['caps'][2 * i + 1].set(color=dark_color)
bp['medians'][i].set(color=dark_color)
if not trait == 0:
plt.ylabel('')
plt.setp(ax.get_yticklabels(), visible=False)
else:
ax.set_yticklabels(super_feats[super_feats_sort_indices])
xlimmax = 0.47
xticks = [0.15, 0.35]
plt.xlim((0, xlimmax))
plt.xticks(xticks)
plt.setp(ax.get_xticklabels(), visible=False)
# lower part of the figure, i.e. features from related work
ax = plt.subplot(grs[(-len(additional_feats)):, trait])
basedata = imp_df.loc[imp_df['T'] == trait]
feat_importances = []
for i in xrange(0, len(additional_feats)):
logi = basedata.feature == additional_feats[additional_feats_sort_indices][i]
feat_importances.append(basedata[logi]['feature importance'])
bp = plt.boxplot(x=feat_importances, patch_artist=True, sym='', vert=False, whis='range',
positions=np.arange(0,len(feat_importances)))
# asthetics
for i in xrange(0, len(additional_feats)):
bp['boxes'][i].set(color=dark_color)
bp['boxes'][i].set(facecolor=light_color) #, alpha=0.5)
bp['whiskers'][2 * i].set(color=dark_color, linestyle='-')
bp['whiskers'][2 * i + 1].set(color=dark_color, linestyle='-')
bp['caps'][2 * i].set(color=dark_color)
bp['caps'][2 * i + 1].set(color=dark_color)
bp['medians'][i].set(color=dark_color) #, linewidth=.1)
if not trait == 0:
plt.ylabel('')
plt.setp(ax.get_yticklabels(), visible=False)
else:
ax.set_yticklabels(additional_feats[additional_feats_sort_indices])
plt.xlim((0, xlimmax))
plt.xticks(xticks)
if trait == 3:
plt.xlabel(conf.medium_traitlabels[trait] + '\n\nFeature Importance')
else:
plt.xlabel(conf.medium_traitlabels[trait])
filename = conf.figure_folder + '/figure2.pdf'
plt.savefig(filename, bbox_inches='tight')
print filename.split('/')[-1], 'written.'
plt.close()
if __name__ == "__main__":
# target file names - save table of F1 scores, feature importances and majority predictions there
datapathI = conf.get_result_folder(conf.annotation_all) + '/f1s.csv' # F1 scores from each iteration
datapathII = conf.get_result_folder(conf.annotation_all) + '/feature_importance.csv' # Feature importance from each iteration
datapathIII = conf.get_result_folder(conf.annotation_all) + '/majority_predictions.csv' # Majority voting result for each participant over all iterations
if not os.path.exists(conf.figure_folder):
os.mkdir(conf.figure_folder)
# if target files do not exist yet, create them
if (not os.path.exists(datapathI)) or (not os.path.exists(datapathII)) or (not os.path.exists(datapathIII)):
f1s = []
feature_importances = []
majority_predictions = []
for trait in xrange(0, conf.n_traits):
predictions = np.zeros((conf.n_participants, conf.max_n_iter),dtype=int)-1
ground_truth = np.loadtxt(conf.binned_personality_file, delimiter=',', skiprows=1, usecols=(trait+1,))
for si in xrange(0, conf.max_n_iter):
filename = conf.get_result_filename(conf.annotation_all, trait, False, si, add_suffix=True)
if os.path.exists(filename):
data = np.load(filename)
if (data['predictions'] > 0).all():
assert data['f1'] == f1_score(ground_truth, data['predictions'], average='macro')
f1s.append([data['f1'], conf.medium_traitlabels[trait]])
else:
# if there was no time window for a condition, like if shopping data only is evaluated,
# the F1 score for each person without a single time window will be set to -1
# but should not be used as such to compute the mean F1 score.
# Thus, here the F1 score is re-computed on the relevant participants only.
pr = data['predictions']
pr = pr[pr > 0]
dt = ground_truth[pr > 0]
f1s.append([f1_score(dt, pr, average='macro'), conf.medium_traitlabels[trait]])
for outer_cv_i in xrange(0, 5): # number outer CV, not person anymore
for fi in xrange(0, conf.max_n_feat):
feature_importances.append([data['feature_importances'][outer_cv_i, fi], trait, gs.full_long_label_list[fi], fi])
predictions[:,si] = data['predictions']
else:
print 'did not find', filename
# compute majority voting for each participant over all iterations
for p in xrange(0, conf.n_participants):
(values, counts) = np.unique(predictions[p, predictions[p,:]>0], return_counts=True)
ind = np.argmax(counts)
majority_predictions.append([values[ind], p, conf.medium_traitlabels[trait]])
f1s_df = pns.DataFrame(data=f1s, columns=['F1', 'trait'])
f1s_df.to_csv(datapathI)
imp_df = pns.DataFrame(data=feature_importances, columns=['feature importance', 'T', 'feature', 'feat_num'])
imp_df.to_csv(datapathII)
majority_predictions_df = pns.DataFrame(data=majority_predictions, columns=['prediction','participant','trait'])
majority_predictions_df.to_csv(datapathIII)
else:
print 'No new results are collected as previous results were available. If you want to overwrite them, please delete the following files:'
print datapathI
print datapathII
print datapathIII
f1s_df = pns.read_csv(datapathI)
imp_df = pns.read_csv(datapathII)
majority_predictions_df = pns.read_csv(datapathIII)
plot_weights() # Figure 2