-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolyscope_sandbox.py
178 lines (131 loc) · 6.41 KB
/
polyscope_sandbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from util import *
from time import sleep
from vectoradammodified import *
from vectoradam import *
import json
import trimesh
import polyscope as ps
import argparse
parser = argparse.ArgumentParser(description='The short demo of the VectorAdam Modified algorithm for simple distance between points.')
ps.init()
parser.add_argument('arg2', type=int, help='Iterations')
parser.add_argument('--learning_rate', type=float, default=1.5, help='Learning rate (default: 1.5)')
parser.add_argument('-f', '--flag', action='store_true', help='A boolean flag for showing vectors')
# Parse the arguments
args = parser.parse_args()
# Access the arguments
# print(args.arg1, file=sys.stderr)
# print(args.arg2, file=sys.stderr)
print(args.learning_rate, file=sys.stderr)
print(args.arg2, file=sys.stderr)
# Set optimizer hyperparameters
lr = args.learning_rate
betas = (0.9, 0.999)
eps = 1e-8
radius = 1
# Define steps constant
steps = args.arg2
# Define vector constant
show_vector_flag = args.flag
starting_point = torch.from_numpy(create_pointer(0, 0, radius))
# starting_point = torch.from_numpy(create_pointer(0.707, 0.707, 0))
print(f"The starting point is {starting_point}.")
# Create the initial pointer n
v = starting_point.clone().numpy()
v = torch.from_numpy(v).to(torch.float32)
v.requires_grad_()
# create initial pointer n, unprojected version
v_unprojected = starting_point.clone().numpy()
v_unprojected = torch.from_numpy(v_unprojected).to(torch.float32)
v_unprojected.requires_grad_()
# visualize both points
v_np = starting_point.clone().numpy().reshape(1,3)
v_unprojected_np = starting_point.clone().numpy().reshape(1,3)
# create vector lists
v_np_list = starting_point.clone().numpy().reshape(1,3)
# initialize the two points
a = torch.tensor([radius, 0.0, 0.0], dtype=torch.float32)
b = torch.tensor([0.0, radius, 0.0], dtype=torch.float32)
# the tensors as polyscope points
a_np = a.clone().numpy().reshape(1, 3)
b_np = b.clone().numpy().reshape(1, 3)
a_cloud = ps.register_point_cloud("a", a_np, radius=0.02, color=(0,0,0))
b_cloud = ps.register_point_cloud("b", b_np, radius=0.02, color=(0,0,0))
v_cloud = ps.register_point_cloud("v", v_np, radius=0.02, color=(0.48,0.99,0))
v_unprojected_cloud = ps.register_point_cloud("v_unprojected", v_unprojected_np, radius=0.02, color=(1.0,0,0))
print(f"The two points a and b respectively are {a} and {b}")
vadam = VectorAdamModified([{'params': v, 'axis': -1}], lr=lr, betas=betas, eps=eps)
vadam_unnormalized = VectorAdam([{'params': v_unprojected, 'axis': -1}], lr=lr, betas=betas, eps=eps)
loss_list = []
loss_list_unnormalized = []
vector_list = np.array([v.detach().numpy().reshape(3)])
vector_list = vector_list.reshape(-1, 3)
vector_list = np.array([0, 0, 0])
vector_list = vector_list.reshape(-1, 3)
# vector_list_unprojected = np.array([v_unprojected.detach().numpy().reshape(3)])
# vector_list_unprojected = vector_list_unprojected.reshape(-1,3)
vector_list_unprojected = np.array([0, 0, 0])
vector_list_unprojected = vector_list_unprojected.reshape(-1,3)
position_list = np.array(v.detach().numpy().reshape(1,3))
position_list_unprojected = np.array(v_unprojected.detach().numpy().reshape(1,3))
# Generate a sphere mesh
sphere = trimesh.primitives.Sphere(radius=radius)
# Convert to Polyscope format
vertices = sphere.vertices
faces = sphere.faces
# Set up direction
ps.set_up_dir("y_up")
# Set camera to look at the point (1, 1, 1) from a diagonal bird's eye view toward the origin
with open('format.json', 'r') as file:
json_string = file.read()
ps.set_view_from_json(json_string)
ps.set_ground_plane_mode("shadow_only")
# Create a Polyscope mesh
ps.register_surface_mesh("my_sphere", vertices, faces, transparency=0.2, material="ceramic")
for i in range(steps):
vadam.zero_grad()
vbf = v.detach().cpu().clone()
loss1 = sphere_energy(a, b, v)
loss1.backward()
vadam.step_modified(v)
vaf = v.detach().cpu().clone()
adam_step = vaf - vbf
# append to vector lists and loss lists
vector_list = np.concatenate((vector_list, adam_step.clone().numpy().reshape(1,3)), axis=0)
loss_list.append(loss1.item())
vadam_unnormalized.zero_grad()
vbf_unnormalized = v_unprojected.detach().cpu().clone()
loss2 = sphere_energy(a, b, v_unprojected)
loss2.backward()
vadam_unnormalized.step()
vaf_unnormalized = v_unprojected.detach().cpu().clone()
adam_step_unnormalized = vaf_unnormalized - vbf_unnormalized
# append to vector lists and loss lists (unprojected)
vector_list_unprojected = np.concatenate((vector_list_unprojected, adam_step_unnormalized.clone().numpy().reshape(1,3)), axis=0)
loss_list_unnormalized.append(loss2.item())
normalized_v = normalize_tensor(v.clone(), radius)
normalized_unprojected_v = normalize_tensor(v_unprojected.clone(), radius)
with torch.no_grad():
v.copy_(normalized_v)
v_unprojected.copy_(normalized_unprojected_v)
# for multiple vectors to show up
position_list = np.concatenate((position_list, v.detach().numpy().reshape(1,3)), axis=0)
position_list_unprojected = np.concatenate((position_list_unprojected, v_unprojected.detach().numpy().reshape(1,3)), axis=0)
# Update the points
new_v_np = normalized_v.detach().numpy().reshape(1,3)
new_unprojected_v = normalized_unprojected_v.detach().numpy().reshape(1,3)
# put on sphere
v_cloud.update_point_positions(new_v_np)
v_unprojected_cloud.update_point_positions(new_unprojected_v)
v_cloud_list = ps.register_point_cloud("Points", position_list.reshape(-1,3), color=(0.48,0.99,0))
v_cloud_list.add_vector_quantity("Gradient Vector", np.array(vector_list), vectortype='ambient', enabled=True, color=(0.48,0.99,0))
v_unprojected_cloud_list = ps.register_point_cloud("Points (unprojected)", position_list_unprojected.reshape(-1,3), color=(1.0,0,0))
v_unprojected_cloud_list.add_vector_quantity("Gradient Vector (unprojected)", np.array(vector_list_unprojected), color=(1.0,0,0), vectortype='ambient', enabled=True)
ps.frame_tick()
sleep(0.5)
ps.show()
# Disable interactive mode and show the final plot
print(f"The final position of projected VectorAdam is {v}, the intended position is {project_point_to_sphere(find_closest_point(a, b), radius)}")
print(f"The final position of the unnormalized and unproject point is {v_unprojected}, the intended position is {project_point_to_sphere(find_closest_point(a, b), radius)}")
# print_list(loss_list, radius)
# print_list(loss_list_unnormalized, radius)