forked from pytorch/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuper_resolve.py
41 lines (33 loc) · 1.31 KB
/
super_resolve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from __future__ import print_function
import argparse
import torch
from PIL import Image
from torchvision.transforms import ToTensor
import numpy as np
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('--input_image', type=str, required=True, help='input image to use')
parser.add_argument('--model', type=str, required=True, help='model file to use')
parser.add_argument('--output_filename', type=str, help='where to save the output image')
parser.add_argument('--cuda', action='store_true', help='use cuda')
opt = parser.parse_args()
print(opt)
img = Image.open(opt.input_image).convert('YCbCr')
y, cb, cr = img.split()
model = torch.load(opt.model)
img_to_tensor = ToTensor()
input = img_to_tensor(y).view(1, -1, y.size[1], y.size[0])
if opt.cuda:
model = model.cuda()
input = input.cuda()
out = model(input)
out = out.cpu()
out_img_y = out[0].detach().numpy()
out_img_y *= 255.0
out_img_y = out_img_y.clip(0, 255)
out_img_y = Image.fromarray(np.uint8(out_img_y[0]), mode='L')
out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC)
out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC)
out_img = Image.merge('YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB')
out_img.save(opt.output_filename)
print('output image saved to ', opt.output_filename)